Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Rapid detection of several endangered agarwood-producing Aquilaria species and their potential adulterants using plant DNA barcodes coupled with high-resolution melting (Bar-HRM) analysis

Shiou Yih Lee
  • Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dhilia Udie Lamasudin
  • Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rozi Mohamed
  • Corresponding author
  • Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, Phone: +60-3-8946 7183 (Office), Fax: 60-3-8943 2514
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-07 | DOI: https://doi.org/10.1515/hf-2018-0149

Abstract

Aquilaria is an endangered agarwood-producing genus that is currently protected by international laws. The agarwood trade is strictly monitored to prevent illegal harvesting, which has caused high demand for this natural product. Other plant sources of similar appearance or fragrance as agarwood are used as adulterant species in counterfeit products. To promote species identification via the DNA barcoding technique, the existing DNA barcoding database in our laboratory was enriched with seven plant barcoding sequences from a commercially important Aquilaria species (Aquilaria beccariana) and seven adulterant species (Cocos nucifera, Dalbergia latifolia, Pinus contorta var. latifolia, Santalum album, Strychnos ignatii, Thuja sp. and Terminalia catappa). DNA barcoding with high-resolution melting analysis (Bar-HRM) showed that the mini-barcode internal transcribed spacer 1 (ITS1) was an effective gene locus that allows for a rapid and species-specific detection of Aquilaria and their adulterants, while four other mini-barcodes (rbcL, trnL intron, ITS2 and 5.8s) functioned as a support and a crosscheck for the barcoding results. The accuracy of the Bar-HRM technique in species origin identification was further assessed with seven agarwood blind specimens. The Bar-HRM technique is a potential tool for validating agarwood-species origin and detecting products with adulterant species.

Keywords: mini-barcodes; neighbor-joining tree; species authentication; Thymelaeaceae; wood forensics

References

  • Asif, M.J., Cannon, C.H. (2005) DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Mol. Biol. Report. 23:185–192.CrossrefGoogle Scholar

  • Baldwin, B.G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol. Phylogenet. Evol. 1:3–16.PubMedCrossrefGoogle Scholar

  • Behrens-Chapuis, S., Malewski, T., Suchecka, E., Geiger, M.F., Herder, F., Bogdanowicz, W. (2018) Discriminating European cyprinid specimens by barcode high-resolution melting analysis (Bar-HRM) – a cost efficient and faster way for specimen assignment? Fish. Res. 204:61–73.Web of ScienceCrossrefGoogle Scholar

  • Bosmali, I., Ganopoulos, I., Madesis, P., Tsaftaris, A. (2012) Microsatellite and DNA-barcode regions typing combined with high resolution melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res. Int. 46:141–147.CrossrefWeb of ScienceGoogle Scholar

  • Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K. (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613.Web of SciencePubMedCrossrefGoogle Scholar

  • Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., Zhou, S. (2016) Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16:138–149.PubMedCrossrefWeb of ScienceGoogle Scholar

  • CITES. (2004) Convention on International Trade in Endangered Species of Wild Fauna and Flora. Consideration of proposals for amendment of Appendices I and II-Aquilaria spp. and Gyrinops spp. Thirteenth meeting of the Conference of the Parties, Bangkok, 2–14 Oct 2004.Google Scholar

  • Coghlan, M.L., Haile, J., Houston, J., Murray, D.C., White, N.E., Moolhuijzen, P., Bellgard, M.I., Bunce, M. (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet. 8:e1002657.CrossrefPubMedWeb of ScienceGoogle Scholar

  • de Boer, H.J., Ichim, M.C., Newmaster, S.G. (2015) DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 38:611–620.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Deguilloux, M., Pemonge, M., Petit, R. (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc. R. Soc. Lond. B Biol. Sci. 269:1039–1046.CrossrefGoogle Scholar

  • Druml, B., Cichna-Markl, M. (2014) High resolution melting (HRM) analysis of DNA – its role and potential in food analysis. Food Chem. 158:245–254.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Eurlings, M.C.M., Gravendeel, B. (2005) TrnL-trnF sequence data imply paraphyly of Aquilaria and Gyrinops (Thymelaeaceae) and provide new perspectives for agarwood identification. Plant Syst. Evol. 254:1–12.CrossrefGoogle Scholar

  • Farah, A.H., Lee, S.Y., Gao, Z., Yao, T.L., Madon, M., Mohamed, R. (2018) Genome size, molecular phylogeny, and evolutionary history of the tribe Aquilarieae (Thymelaeaceae), the natural source of agarwood. Front. Plant Sci. 9:712.Web of ScienceCrossrefPubMedGoogle Scholar

  • Ganopoulos, I., Madesis, P., Tsaftaris, A. (2012a) Universal ITS2 barcoding DNA region coupled with high-resolution melting (HRM) analysis for seed authentication and adulteration testing in leguminous forage and pasture species. Plant Mol. Biol. Report. 30:1322–1328.CrossrefGoogle Scholar

  • Ganopoulos, I., Madesis, P., Darzentas, N., Argiriou, A., Tsaftaris, A. (2012b) Barcode high resolution melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis”(Lathyrus clymenum) adulterants. Food Chem. 133:505–512.CrossrefWeb of ScienceGoogle Scholar

  • Gasson, P. (2011) How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA J. 32:137–154.Web of ScienceGoogle Scholar

  • Jiao, L., Yin, Y., Cheng, Y., Jiang, X. (2014) DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood samples. Holzforschung 68:487–494.Web of ScienceGoogle Scholar

  • Jiao, L., Liu, X., Jiang, X., Yin, Y. (2015) Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification. Holzforschung 69:925–931.Web of ScienceGoogle Scholar

  • Jim, C.Y. (2015) Cross-border itinerant poaching of agarwood in Hong Kong’s peri-urban forests. Urban For. Urban Greening 14:420–431.Web of ScienceCrossrefGoogle Scholar

  • Kalivas, A., Ganopoulos, I., Xanthopoulou, A., Chatzopoulou, P., Tsaftaris, A., Madesis, P. (2014) DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece. Mol. Biol. Rep. 41:5147–5155.Web of SciencePubMedCrossrefGoogle Scholar

  • Kleinschmit, D., Mansourian, S., Wildburger, C., Purret, A. (2016) Illegal Logging and Related Timber Trade – Dimensions, Drivers, Impacts and Responses. A Global Scientific Rapid Response Assessment Report. IUFRO World Series Volume 35. International Union of Forest Research Organizations, Vienna.Google Scholar

  • Kress, W.J., Erickson, D.L. (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508.Web of ScienceCrossrefPubMedGoogle Scholar

  • Kumar, S., Stecher, G., Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Lee, S.Y., Ng, W.L., Mahat, M.N., Nazre, M., Mohamed, R. (2016a) DNA barcoding of the endangered Aquilaria (Thymelaeaceae) and its application in species authentication of agarwood products traded in the market. PLoS One 11:e0154631.Web of ScienceCrossrefGoogle Scholar

  • Lee, S.Y., Ng, W.L., Mohamed, R. (2016b) Rapid species identification of highly degraded agarwood products from Aquilaria using real-time PCR. Conserv. Genet. Resour. 8:581–585.Web of ScienceCrossrefGoogle Scholar

  • Lee, S.Y., Mohamed, R., Faridah-Hanum, I., Lamasudin, D.U. (2017) Utilization of the internal transcribed spacer (ITS) DNA sequence to trace the geographical sources of Aquilaria malaccensis Lam. Populations. Plant. Genet. Resour. 16:103–111.Google Scholar

  • Li, M., But, P.P.H., Shaw, P.C. (2013) Molecular identification of traditional medicinal materials. In: Molecular Pharmacognosy. Ed. Huang, L. Springer, Dordrecht. pp. 45–66.Google Scholar

  • Liu, Y.Y., Wei, J.H., Gao, Z.H., Zhang, Z., Lyu, J.C. (2017) A review of quality assessment and grading for agarwood. Chin. Herb. Med. 9:22–30.Web of ScienceCrossrefGoogle Scholar

  • Mohamed, R., Lee, S.Y. (2016) Keeping up appearances: agarwood grades and quality. In: Agarwood. Ed. Mohamed, R. Springer, Singapore. pp. 149–167.Web of ScienceGoogle Scholar

  • Mohamed, R., Tan, H.Y., Siah, C.H. (2012) A real-time PCR method for the detection of trnL-trnF sequence in agarwood and products from Aquilaria (Thymelaeaceae). Conserv. Genet. Resour. 4:803–806.CrossrefWeb of ScienceGoogle Scholar

  • Obidzinski, K., Andrianto, A., Wijaya, C. (2007) Cross-border timber trade in Indonesia: critical or overstated problem? Forest governance lessons from Kalimantan. Int. Forest. Rev. 9:526–535.CrossrefWeb of ScienceGoogle Scholar

  • Osathanunkul, M., Madesis, P., de Boer, H. (2015) Bar-HRM for authentication of plant-based medicines: evaluation of three medicinal products derived from Acanthaceae species. PLoS One 10:e0128476.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Palais, R.A., Liew, M.A., Wittwer, C.T. (2005) Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping. Anal. Biochem. 346:167–175.PubMedCrossrefGoogle Scholar

  • Peng, C.S., Osman, M.F., Bahari, N., Zakaria, R., Rahim, K.A. (2015) Agarwood inducement technology: a method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. J. Agrobiotech. 6:1–16.Google Scholar

  • Pereira, F., Carneiro, J., Amorim, A. (2008) Identification of species with DNA-based technology: current progress and challenges. Recent Pat. DNA Gene Seq. 2:187–200.CrossrefPubMedGoogle Scholar

  • Poinar, H.N., Hofreiter, M., Spaulding, W.G., Martin, P.S., Stankiewicz, B.A., Bland, H., Evershed, R.P., Possnert, G., Pääbo, S. (1998) Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402–406.PubMedCrossrefGoogle Scholar

  • Sambrook, J. The Condensed Protocols from Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 2006.Google Scholar

  • Sang, T., Crawford, D.J., Stuessy, T.F. (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84:1120–1136.CrossrefPubMedGoogle Scholar

  • Singtonat, S., Osathanunkul, M. (2015) Fast and reliable detection of toxic Crotalaria spectabilis Roth. in Thunbergia laurifolia Lindl. herbal products using DNA barcoding coupled with HRM analysis. BMC Complement. Altern. Med. 15:162.Google Scholar

  • Subasinghe, S.M.C.U.P. (2013) Agarwood production in Gyrinops walla (Walla patta): Myths and reality. Proc. Int. Forest Environ. Symp. 18:74.Google Scholar

  • Sun, W., Li, J.J., Xiong, C., Zhao, B., Chen, S.L. (2016) The potential power of Bar-HRM technology in herbal medicine identification. Front. Plant Sci. 7:367.Web of SciencePubMedGoogle Scholar

  • Taberlet, P., Gielly, L., Pautou, G., Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17:1105–1109.PubMedCrossrefGoogle Scholar

  • Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., Vermat, T., Corthier, G., Brochmann, C., Willerslev, E. (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35:e14.Web of ScienceCrossrefPubMedGoogle Scholar

  • Tate, J.A., Simpson, B.B. (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst. Bot. 28:723–737.Google Scholar

  • Tucker, E.J., Huynh, B.L. (2014) Genotyping by high-resolution melting analysis. In: Crop Breeding. Eds. Fleury, D., Whitford, R. Humana Press, New York. pp. 59–66.Google Scholar

  • Ugochukwu, A.I., Hobbs, J.E., Phillips, P.W., Kerr, W.A. (2018) Technological solutions to authenticity issues in international trade: the case of CITES listed endangered species. Ecol. Econ. 146:730–739.Web of ScienceCrossrefGoogle Scholar

  • Villa, C., Costa, J., Meira, L., Oliveira, M.B.P., Mafra, I. (2016) Exploiting DNA mini-barcodes as molecular markers to authenticate saffron (Crocus sativus L.). Food Control 65:21–31.CrossrefWeb of ScienceGoogle Scholar

  • Wagner, S., Lagane, F., Seguin-Orlando, A., Schubert, M., Leroy, T., Guichoux, E., Chancerel, E., Bech-Hebelstrup, I., Bernard, V., Billard, C., Billaud, Y. (2018) High-throughput DNA sequencing of ancient wood. Mol. Ecol. 275: 1138–1154.Web of ScienceGoogle Scholar

  • Yin, Y., Jiao, L., Dong, M., Jiang, X., Zhang, S. (2016) Wood resources, identification, and utilization of agarwood in China. In: Agarwood. Ed. Mohamed, R. Springer, Singapore, pp. 21–38.Google Scholar

About the article

Received: 2018-07-01

Accepted: 2018-11-27

Published Online: 2019-01-07


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180149, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0149.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in