Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Calibration of near infrared spectroscopy (NIRS) data of three Eucalyptus species with extractive contents determined by ASE extraction for rapid identification of species and high extractive contents

Yanjie LiORCID iD: https://orcid.org/0000-0001-7750-757X / Clemens Altaner
Published Online: 2019-01-15 | DOI: https://doi.org/10.1515/hf-2018-0166

Abstract

Plantations of naturally durable timber species could substitute unsustainably harvested wood from tropical forests or wood treated with toxic preservatives. The New Zealand Dryland Forests Initiative (NZDFI) has established a tree-breeding program to develop genetically improved planting stock for durable eucalyptus plantations. In this study the durable heartwood of Eucalyptus bosistoana, Eucalyptus globoidea and Eucalyptus argophloia was characterized by near infrared (NIR) spectroscopy and NIR data was calibrated with the extractives content (EC), determined by accelerated solvent extraction (ASE) extraction, by means of a partial least squares regression (PLSR) model. It was possible to predict the EC content in the range of 0.34–18.9% with a residual mean square error (RMSE) of 0.9%. Moreover, the three species could also be differentiated by NIR spectroscopy with 100% accuracy, i.e. NIR spectroscopy is able to segregate timbers from mixed species forest plantations.

Keywords: Eucalyptus argophloia; E. bosistoana; E. globoidea; partial least squares regression (PLSR); PLS-discriminant analysis (PLS-DA); variable selection (sMC)

References

  • Adedipe, O.E., Dawson-Andoh, B., Slahor, J., Osborn, L. (2008) Classification of red oak (Quercus rubra) and white oak (Quercus alba) wood using a near infrared spectrometer and soft independent modelling of class analogies. J. Near Infrared Spec. 16:49–57.CrossrefGoogle Scholar

  • Altaner, C.M., Murray, T.J., Morgenroth, J. Durable Eucalypts on Drylands: Protecting and Enhancing Value: Workshop Proceedings. New Zealand School of Forestry, University of Canterbury, NZ, 2017.Google Scholar

  • Apiolaza, L., Chauhan, S., Walker, J., Revisiting eucalypts – a strategic assessment. (2009) Wood Technology Research Centre, University of Canterbury, New Zealand. pp. 147–153.Google Scholar

  • AS 5604. Timber-Natural Durability Ratings. Standards Australia, Homebush, 2003.Google Scholar

  • ASTM, D. Standard Test Method of Accelerated Laboratory Test of Natural Decay Resistance of Woods. American Society for Testing Materials, West Conshohocken, 2005.Google Scholar

  • Barbosa, L., Maltha, C., Cruz, M. (2005) Chemical composition of lipophilic and polar extractives of Eucalyptus grandis. Sci. Eng. J. 15:13–20.Google Scholar

  • Benouadah, N., Pranovich, A., Aliouche, D., Hemming, J., Smeds, A., Willför, S. (2018) Analysis of extractives from Pinus halepensis and Eucalyptus camaldulensis as predominant trees in Algeria. Holzforschung 72:97–104.CrossrefGoogle Scholar

  • Bootle, K.R. Wood in Australia. Types, Properties, and Uses. McGraw-Hill, Australia, 2005.Google Scholar

  • Borer, M.W., Zhou, X., Hays, D.M., Hofer, J.D., White, K.C. (1998) Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy. J. Pharm. Biomed. Anal. 17:641–650.PubMedCrossrefGoogle Scholar

  • Brooker, M.I.H. (2000) A new classification of the genus Eucalyptus L’Her.(Myrtaceae). Aust. Syst. Bot. 13:79–148.CrossrefGoogle Scholar

  • Bush, D., McCarthy, K., Meder, R. (2011) Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann. For. Sci. 68:1057–1066.CrossrefGoogle Scholar

  • Chin, W.W., Newsted, P.R. (1999) Structural equation modeling analysis with small samples using partial least squares. Stat. Strat. Small. Samp. Res. 1:307–341.Google Scholar

  • Downes, G., Meder, R., Hicks, C., Ebdon, N. (2009) Developing and evaluating a multisite and multispecies NIR calibration for the prediction of Kraft pulp yield in eucalypts. South. For. 71:155–164.CrossrefGoogle Scholar

  • Eaton, R.A., Hale, M.D. Wood: Decay, Pests and Protection. Chapman and Hall, London, 1993.Google Scholar

  • EN350-1. Durability of wood and wood-based products – Natural durability of solid wood. Part 1: Guide to the principles of testing and classification of the natural durability of wood. European Committee for Standardization Brussels, 1994.Google Scholar

  • Espinoza, J.A., Hodge, G.R., Dvorak, W.S. (2012) The potential use of near infrared spectroscopy to discriminate between different pine species and their hybrids. J. Near. Infrared. Spec. 20:437–447.CrossrefGoogle Scholar

  • Fackler, K., Schwanninger, M. (2010) Polysaccharide degradation and lignin modification during brown rot of spruce wood: a polarised Fourier transform near infrared study. J. Near. Infrared. Spec. 18:403–416.CrossrefGoogle Scholar

  • Garson, G.D. Partial Least Squares: Regression and Structural Equation Models. Statistical Associates Publishers, Asheboro, NC, 2016.Google Scholar

  • Gebreselassie, M.N., Ader, K., Boizot, N., Millier, F., Charpentier, J.-P., Alves, A., Simões, R., Rodrigues, J.C., Bodineau, G., Fabbrini, F., Sabatti, M., Bastien, C., Segura, V. (2017) Near-infrared spectroscopy enables the genetic analysis of chemical properties in a large set of wood samples from Populus nigra (L.) natural populations. Ind. Crops. Prod. 107:159–171.CrossrefGoogle Scholar

  • Gierlinger, N., Jacques, D., Grabner, M., Wimmer, R., Schwanninger, M., Rozenberg, P., Pâques, L.E. (2004) Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees 18:102–108.CrossrefGoogle Scholar

  • Harju, A.M., Venäläinen, M. (2006) Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay. Can. J. For. Res. 36:1797–1804.CrossrefGoogle Scholar

  • He, W., Hu, H. (2013) Rapid prediction of different wood species extractives and lignin content using near infrared spectroscopy. J. Wood Chem. Technol. 33:52–64.CrossrefGoogle Scholar

  • Hill, C. Wood Modification: Thermal, Chemical and Other Processes. John Wiley and Sons, Ltd., Chichester, 2006. p. 240.Google Scholar

  • Hillis, W. (1991) Eucalypts: chemistry, uses. Appita. J. 44:239–244.Google Scholar

  • Hillis, W., Hart, J., Yazaki, Y. (1974) Polyphenols of Eucalyptus sideroxylon wood. Phytochemistry 13:1591–1595.CrossrefGoogle Scholar

  • Hwang, S.-W., Horikawa, Y., Lee, W.-H., Sugiyama, J. (2016) Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. J. Wood Sci. 62:156–167.CrossrefGoogle Scholar

  • ITTO. Biennial Review and Assessment of the World Timber Situation 2015–2016. Yokohama, Japan, 2017.Google Scholar

  • Jayawickrama, K.J. (2001) Breeding radiata pine for wood stiffness: review and analysis. Aust. For. 64:51–56.CrossrefGoogle Scholar

  • Kaosa-ard, A., Suangtho, V., Kjaer, E. (1998) Genetic improvement of teak (Tectona grandis) in Thailand. For. Gene. Res. 26:21–29.Google Scholar

  • Kuhn, M. (2008) Caret package. J. Stat. Softw. 28:1–26.Google Scholar

  • Lazarescu, C., Hart, F., Pirouz, Z., Panagiotidis, K., Mansfield, S.D., Barrett, J.D., Avramidis, S. (2017) Wood species identification by near-infrared spectroscopy. Int. Wood Pro. J. 8:32–35.CrossrefGoogle Scholar

  • Lee, D., Zbonak, A., McGavin, R. Development of E. argophloia in Queensland: Lessons Learnt. In Developing a Eucalypt Resource: Learning from Australia and Elsewhere. Wood Technology Research Centre, Blenheim, N.Z., 2011.Google Scholar

  • Li, Y., Altaner, C.M. Improving heartwood quality of durable eucalypts. In: Durable Eucalypts on Drylands: Protecting and Enhancing Value. Workshop Proceedings, Blenheim, NZ, 2017.Google Scholar

  • Mehmood, T., Liland, K.H., Snipen, L., Sæbø, S. (2012) A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst. 118:62–69.CrossrefGoogle Scholar

  • Mevik, B., Wehrens, R., Hovde, L. Partial Least Squares and Principal Component Regression. R package version 2.5-0, 2015.Google Scholar

  • Michell, A.J., Schimleck, L.R. (1996) NIR spectroscopy of woods from Eucalyptus globulus. Appita. J. 49:23–26.Google Scholar

  • Minasny, B., McBratney, A.B., Bellon-Maurel, V., Roger, J.-M., Gobrecht, A., Ferrand, L., Joalland, S. (2011) Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 167:118–124.Google Scholar

  • Nellemann, C. Green Carbon, Black Trade: Illegal Logging, Tax Fraud and Laundering in the World’s Tropical Forests. United Nations Environment Programme, GRID-Arendal, 2012.Google Scholar

  • Nicholas, I., Millen, P. Eucalyptus globoidea – a Durable Hardwood for Planting in the Bay of Plenty Region, New Zealand Dryland Forests Initiative, Blenheim, NZ, 2012.Google Scholar

  • Nichols, J.D., Bristow, M., Vanclay, J.K. (2006) Mixed-species plantations: prospects and challenges. For. Ecol. Manag. 233:383–390.CrossrefGoogle Scholar

  • Nisgoski, S., Schardosin, F.Z., Batista, F.R.R., de Muñiz, G.I.B., Carneiro, M.E. (2016) Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil. Wood. Sci. Technol. 50:71–80.CrossrefGoogle Scholar

  • NZS3602. Timber and Wood-Based Products for Use in Building. New Zealand Standards Association, Wellington, NZ, 2003.Google Scholar

  • Osborne, B.G., Fearn, T., Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientific and Technicalogy, Harlow, England, 1993.Google Scholar

  • Pettersen, R.C. The chemical composition of wood. In: The Chemistry of Solid Wood. Advances in Chemistry Series 207. Eds. Rowell, R.M. American Chemical Society, Washington, DC, 1984.Google Scholar

  • Poke, F.S., Wright, J.K., Raymond, C.A. (2005) Predicting extractives and lignin contents in Eucalyptus globulus using near infrared reflectance analysis. J. Wood Chem. Technol. 24:55–67.CrossrefGoogle Scholar

  • R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing: Vienna, Austria, 2017.Google Scholar

  • Raymond, C.A. (2002) Genetics of Eucalyptus wood properties. Ann. For. Sci. 59:525–531.CrossrefGoogle Scholar

  • Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L., Avdalovic, N., Pohl, C. (1996) Accelerated solvent extraction: a technique for sample preparation. Anal. Chem. 68:1033–1039.CrossrefGoogle Scholar

  • Rudman, P. (1964) Durability in the genus Eucalyptus. Aust. For. 28:242–257.Google Scholar

  • Scheffer, T.C., Morell, J.J. (1998) Natural durability of wood: a worldwide checklist of species. Research Contribution 22, Forest Research Laboratory, Oregon State University Research Contribution, Corvallis. p. 58.Google Scholar

  • Schimleck, L.R., Michell, A.J., Vinden, P. (1996) Eucalypt wood classification by NIR spectroscopy and principal components analysis. Appita. J. 49:319–324.Google Scholar

  • Schwanninger, M., Rodrigues, J.C., Fackler, K. (2011) A review of band assignments in near infrared spectra of wood and wood components. J. Near. Infrared. Spec. 19:287–308.CrossrefGoogle Scholar

  • Shou, G., Zhang, W., Gu, Y., Zhao, D. (2014) Application of near infrared spectroscopy for discrimination of similar rare woods in the Chinese market. J. Near. Infrared. Spec. 22:423–432.CrossrefGoogle Scholar

  • Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M. Near-Infrared Spectroscopy: Principles, Instruments, Applications. Wiley-VCH Verlag GmbH, Weinheim, Germany, 2002.Google Scholar

  • Stevens, A., Ramirez–Lopez, L. (2014) An introduction to the prospectr package. R Package Vignette, Report No.: R Package Version 0.1. 3.Google Scholar

  • Taylor, A.M., Labbé, N., Noehmer, A. (2011) NIR-based prediction of extractives in American white oak heartwood. Holzforschung 65:185–190.Google Scholar

  • Thulasidas, P.K., Bailleres, H. Wood Quality for Advanced Uses of Teak from Natural and Planted Forests. International Union of Forest Research Organzations (IUFRO), The Global Teak Study Analysis, Evaluation and Future Potential of Teak Resources, 2017.Google Scholar

  • Townsend, T.G., Solo-Gabriele, H. Environmental Impacts of Treated Wood. CRC press, Boca Raton, FL, 2006.Google Scholar

  • Tran, T.N., Afanador, N.L., Buydens, L.M., Blanchet, L. (2014) Interpretation of variable importance in partial least squares with significance multivariate correlation (sMC). Chemometr. Intell. Lab. Syst. 138:153–160.CrossrefGoogle Scholar

  • Tsuchikawa, S., Kobori, H. (2015) A review of recent application of near infrared spectroscopy to wood science and technology. J. Wood Sci. 61:213–220.CrossrefGoogle Scholar

  • Tsuchikawa, S., Schwanninger, M. (2013) A review of recent near-infrared research for wood and paper (Part 2). Appl. Spectrosc. Rev. 48:560–587.CrossrefGoogle Scholar

  • UNODC. World Wildlife Crime Report: Trafficking in protected species. United Nations, New York, 2016.Google Scholar

  • Walker, J.C.F. Developing a Eucalypt Resource: Learning from Australia and Elsewhere. Wood Technology Research Centre, Blenheim, N.Z., 2011.Google Scholar

  • West, P.W. (Ed.) Mixed-species Plantations. In: Growing Plantation Forests. Springer, Switzerland, 2014, pp. 211–222.Google Scholar

  • Whiteman, P., Cameron, J., Farrington, A. (1996) Breeding trees for improved pulp and paper production: a review. Appita. J. 49:50–53.Google Scholar

  • Wold, H. (2004) Partial least squares. In: Encyclopedia of Statistical Sciences. John Wiley & Sons, New York.Google Scholar

  • Zhou, C., Jiang, W., Cheng, Q., Via, B.K. (2015a) Multivariate calibration and model integrity for wood chemistry using fourier transform infrared spectroscopy. J. Anal. Methods. Chem. 2015:429846.Google Scholar

  • Zhou, C., Jiang, W., Via, B.K., Fasina, O., Han, G. (2015b) Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR. Carbohydr. Polym. 121:336–341.CrossrefGoogle Scholar

  • Zobel, B., Jett, J. Genetics of Wood Production. Springer-Verlag, Berlin, 1995.Google Scholar

About the article

Received: 2018-07-28

Accepted: 2018-12-11

Published Online: 2019-01-15


Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved submission.

Research funding: This work was funded by the New Zealand Ministry of Business, Innovation and Employment (MBIE) Partnership for Specialty Wood Products (contract FFRX1501).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180166, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0166.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in