Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

See all formats and pricing
More options …
Ahead of print


Preparation of mineral bound particleboards with improved fire retardant and smoke suppression properties based on a mix of inorganic adhesive

Kai Yang
  • College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xingong Li
  • Corresponding author
  • College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-02-22 | DOI: https://doi.org/10.1515/hf-2018-0167


An inorganic adhesive mix consisting of MgO, MgCl2, Na2SiO3, Na3PO4 was used to prepare mineral bound particleboard (mbPB) without formaldehyde emission and with excellent fire retardant and smoke suppression properties. The mechanical properties, interior microstructure, fire retardancy and smoke suppression behavior of the mbPB was investigated based on scanning electron microscopy (SEM) and cone calorimetric observations. The results showed that the presence of massive hydrates of the inorganic adhesive covers the mbPB particles, which are responsible for the positive effects. The effective smoke suppression was accompanied by an essential carbon monoxide (CO) and carbon dioxide (CO2) decrement in the gaseous effluents. The mbPBs are suitable as indoor material for wall, floor, and furniture as fire retardant and smoke suppressive materials.

Keywords: fire retardant; formaldehyde emission; inorganic adhesive; interior microstructure; mechanical property particleboard; smoke suppression


  • AQSIQ, SAC (2009) GB/T 24312-2009 Cement bounded particleboard.Google Scholar

  • Bribián, I.Z., Capilla, A.V., Usón, A.A. (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 46:1133–1140.Web of ScienceCrossrefGoogle Scholar

  • Burnett, M.P., Kharazipour, A. (2017) Mechanical behaviour of a lightweight, three-layered sandwich panel based on the raw material maize. Holzforschung 72:65–70.Web of ScienceGoogle Scholar

  • Chang, L., Guo, W.J., Lyu, B., Zhang, Y.P. (2017) Development status and trends of China’s particleboard industry. China Wood-Based Panels 10:1–5.Google Scholar

  • Chen, W.M., Li, S., Feizbakhshan, M., Amdebrhan, B.T., Shi, S.K., Xin, W., Nguyen, T., Chen, M.Z., Zhou, X.Y. (2018) TiO2-SiO2 nanocomposite aerogel loaded in melamine-impregnated paper for multi-functionalization: formaldehyde degradation and smoke suppression. Constr. Build. Mater. 161:381–388.Web of ScienceCrossrefGoogle Scholar

  • Cheng, H.N., Ford, C., Dowd, M.K., He, Z.Q. (2016) Soy and cottonseed protein blends as wood adhesives. Ind. Crop. Prod. 85:324–330.CrossrefWeb of ScienceGoogle Scholar

  • Costa, N., Pereira, J., Martins, J., Ferra, J., Cruz, P., Magalhães, F., Mendes, A., Carvalho, L. (2012) Alternative to latent catalysts for curing of resins used in the production of low formaldehyde emission wood-based panels. Int. J. Adhes. 33:56–60.CrossrefWeb of ScienceGoogle Scholar

  • Dai, Y.L., Zhu, J.Y., Tang, Z.R., Li, J. (2016) Discussion on physical and mechanical properties of paulownia particleboard with homogeneous structure. China Forest Products Industry 43:24–27.Google Scholar

  • De Melo, R.R., Stangerlin, D.M., Santana, R.R.C., Pedrosa, T.D. (2014) Physical and mechanical properties of particleboard manufactured from wood, bamboo and rice husk. Mater. Res. Ibero-Am. J. 17:682–686.Web of ScienceGoogle Scholar

  • Pelaez-Samaniego, M.R., Yadama, V., Garcia-Perez, T., Lowell, E., Amidon, T. (2014) Effect of hot water extracted hardwood and softwood chips on particleboard properties. Holzforschung 68:807–815.Web of ScienceGoogle Scholar

  • Ge, X.W., Wang, L.H., Hou, J.J., Rong, B.B., Yue, X.Q., Zhang, S.M. (2017) The effects of brown-rot decay on select wood properties of poplar (Populus cathayana Rehd.) and its mechanism of action. Holzforschung 71:355–362.Web of ScienceGoogle Scholar

  • Huang, J., Li, K.C. (2016) Development and characterization of a formaldehyde-free adhesive from lupine flour, glycerol, and a novel curing agent for particleboard (PB) production. Holzforschung 70:927–935.Web of ScienceGoogle Scholar

  • Huang, J., Li, C.H., Li, K.C. (2012) A new soy flour-polyepoxide adhesive system for making interior plywood. Holzforschung 66:427–431.Web of ScienceGoogle Scholar

  • Jeong, S.G., Jeon, J., Seo, J., Lee, J.H., Kim, S. (2012) Performance evaluation of the microencapsulated PCM for wood-based flooring application. Energ. Convers. Manage. 64:516–521.CrossrefWeb of ScienceGoogle Scholar

  • Ji, Y.S., Zhang, F.Z., Wu, Z.R. (1998) Study on the new type of light magnesium cement wall board material with high strength. J. Building Mater. 1:100–104.Google Scholar

  • Jin, S.C., Li, K., Li, J.Z., Chen, H. (2017) A low-cost, formaldehyde-free and high flame retardancy wood adhesive from inorganic adhesives: properties and performance. Polymers 9:513–527.Web of ScienceCrossrefGoogle Scholar

  • Li, X.M., Wang, J.J., Weng, R., Zhu, Y.D. (2003) Effect of emulsoid on the interfacial strength of the glass fiber reinforced magnesian oxychloride cement composites. Acta Materiae Compositae Sinica 20:67–71.Google Scholar

  • Li, R., Lan, C.R., Wu, Z.Z., Huang, T.A., Chen, X.B., Liao, Y.H., Ye, L.F., Lin, X.D., Yang, Y.M., Zheng, Y.M., Xie, Y.Q., Zhuang, Q.P. (2017) A novel particleboard using unsaturated polyester resin as a formaldehyde-free adhesive. Constr. Build. Mater. 148:781–788.CrossrefWeb of ScienceGoogle Scholar

  • Li, R.J., Gutierrez, J., Chung, Y.L., Frank, C.W., Billington, S.L., Sattely, E.S. (2018) A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green. Chem. 20:1459–1466.Web of ScienceCrossrefGoogle Scholar

  • Nazerian, M., Sadeghiipanah, V. (2013) Cement-bonded particleboard with a mixture of wheat straw and poplar wood. J. Forestry. Res. 24:381–390.Web of ScienceCrossrefGoogle Scholar

  • Pedieu, R., Koubaa, A., Riedl, B., Wang, X.M., Deng, J. (2012) Fire-retardant properties of wood particleboards treated with boric acid. Eur. J. Wood Prod. 70:191–197.CrossrefWeb of ScienceGoogle Scholar

  • Seo, H.J., Jeong, S.G., Kim, S. (2015) Development of thermally enhanced wood-based materials with high VOCs adsorption using exfoliated graphite nanoplatelets for use as building materials. Bioresources 10:7081–7091.Google Scholar

  • Shishlov, O., Dozhdikov, S., Glukhikh, V., Eltsov, O., Kraus, E., Orf, L., Heilig, M., Stoyanov, O. (2017) Synthesis of bromo-cardanol novolac resins and evaluation of their effectiveness as flame retardants and adhesives for particleboard. J. Appl. Polym. Sci. 134:45322–45330.CrossrefWeb of ScienceGoogle Scholar

  • Wang, S.Y., Yang, T.H., Lin, L.T., Lin, C.J., Tsai, M.J. (2008) Fire-retardant-treated low-formaldehyde-emission particleboard made from recycled wood-waste. Bioresource Technol. 99:2072–2077.Web of ScienceCrossrefGoogle Scholar

  • Wang, L., Toppinen, A., Juslin, H. (2014) Use of wood in green building: a study of expert perspectives from the UK. J. Clean. Prod. 65:350–361.Web of ScienceCrossrefGoogle Scholar

  • Xie, X.L., Zhou, Z.W., Jiang, M., Xu, X.L., Wang, Z.Y., Hui, D. (2015) Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. Part. B-Eng. 78:153–161.CrossrefWeb of ScienceGoogle Scholar

  • Zuo, Y.F., Xiao, J.H., Wang, J., Liu, W.J., Li, X.G., Wu, Y.Q. (2018) Preparation and characterization of fire retardant straw/magnesium cement composites with an organic-inorganic network structure. Constr. Build. Mater. 171:404–413.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-07-29

Accepted: 2018-12-06

Published Online: 2019-02-22

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors gratefully acknowledge, the National Key R&D Plan Project (2017YFD0601200), and Hunan Key R&D Plan Project (2017SK2334) for funding this project.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20180167, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0167.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in