Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

A study of thermo-hydro-treated (THT) birch wood by chemical analysis and Py-GC/MS

Ingeborga Andersone / Galina Dobele / Bruno Andersons / Nina Kurnosova / Edgars Kuka / Aleksandrs Volperts / Juris Grinins
Published Online: 2019-03-05 | DOI: https://doi.org/10.1515/hf-2018-0169

Abstract

The chemical changes in birch wood occurring at thermo-hydro treatment (THT) was studied at temperatures (T) of 150, 160 and 170°C by analytical pyrolysis [Py-gas chromatography/mass spectrometry/flame ionisation detector (GC/MS/FID)], elemental analysis and traditional wet-chemical analysis. THT wood (THTW) was also extracted with acetone. Mass losses (ML) due to THT and acetone extraction of THTW were considered for material balance calculations. The holocellulose and hemicellulose (HC) contents decrease with increasing THT temperature (THTT), thus the apparent lignin content is elevated by ca. 20%. The HC degradation begins at 150°C, while that of α-cellulose modification at 170°C. Compared to unmodified birch, the THT170°C material contains ca. 10% less α-cellulose and up to 40% less HC. The Py-GC/MS also indicates decreasing amounts of volatile products from polymeric carbohydrates (CHs) and lignin origin as a function of increasing THTT. The identified CH-based Py products of THT170°C of non-extracted (ne) and extracted (e) materials resulted in 13 and 22% weight decrements, respectively, while the lignin-type Py products were reduced by 13 and 49%, respectively. With increasing THTT, the total content of CO2, water and methanol decreases, and the amount of unidentified compounds increases by 30%.

This article offers supplementary material which is provided at the end of the article.

Keywords: analytical pyrolysis; birch wood; chemical analysis; thermo-hydro treatment

References

  • Altgen, M., Hofmann, T., Militz, H. (2016a) Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood. Wood Sci. Technol. 50:1181–1195.CrossrefGoogle Scholar

  • Altgen, M., Willems, W., Militz, H. (2016b) Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. Eur. J. Wood Wood Prod. 74:653–662.CrossrefGoogle Scholar

  • Alves, A., Gierlinger, N., Schwanninger, M., Rodrigues, J. (2008) Analytical pyrolysis as a direct method to determine the lignin content in wood: part 2: evaluation of the common model and the influence of compression wood. J. Anal. Appl. Pyrol. 81:167–172.CrossrefGoogle Scholar

  • Andersson, S., Serima, R., Väänänen, T., Paakkari, T., Jämsä, S., Viitaniemi, P. (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris). Holzforschung 59:422–427.Google Scholar

  • Backa, S., Brolin, A., Nilsson, T. (2001) Characterisation of fungal degraded birch wood by FTIR and Py-GC. Holzforschung 55:225–232.Google Scholar

  • Boonstra, M., van Acker, J., Kegel, E., Stevens, M. (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci. Technol. 41:31–57.CrossrefGoogle Scholar

  • Browning, B.L. Methods in Wood Chemistry. Wiley, New York, 1967.Google Scholar

  • Burmester, A. (1973) Einfluß einer Wärme-Druck Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh- und Werkstoff 31:237–243.CrossrefGoogle Scholar

  • Curling, S., Clausen, C.A., Winandy, J.E. (2001) The effect of hemicelluloses degradation on the mechanical properties of wood during brown rot decay. The International Research Group on Wood Protection, Doc. No. IRG/WP 01-20219, Stockholm, Sweden.Google Scholar

  • Dizhbite, T., Telysheva, G., Dobele, G., Arshanitsa, A., Bikovens, O., Andersone, A., Kampars, V. (2001) Py-GC/MS for characterization of non-hydrolyzed residues from bioethanol production from softwood. J. Anal. Appl. Pyrol. 90:126–132.Google Scholar

  • Esteves, B., Graça, J., Pereira, H. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.Google Scholar

  • Faix, O., Meier, D., Fortmann, I. (1990) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz Roh- Werkstoff 48:281–285.Google Scholar

  • Faix, O., Bremer, J., Schmidt, O., Stevanovic, T. (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spcectroscopy. J. Anal. Appl. Pyrol. 21:147–162.CrossrefGoogle Scholar

  • Fengel, D. (1966) Über die Veränderungen des Holzes un seiners Komponenten im Temperaturbereich bis 200°C. Erste Mitteilung: Heiß- und Kaltwasser extrakte von thermisch behandeltem Fichtenholz. Holz Roh- Werkstoff 24:9–14.CrossrefGoogle Scholar

  • Fengel, D., Przyklenk, M. (1970) Einfluß einer Wärmebehandlung auf das Lignin in Fichtenholz. Holz Roh- Werkstoff 28: 254–263.CrossrefGoogle Scholar

  • Fengel, D., Wegener, G. Wood (Chemistry, Ultrastructure, Reactions). Walter de Gruyter, Berlin, New York, 1984.Google Scholar

  • Funaoka, M., Kako, T., Abe, I. (1990) Condensation of lignin during heating of wood. Wood Sci. Technol. 24:277–288.CrossrefGoogle Scholar

  • Garrote, G., Dominguez, H., Parajó, J.C. (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh- Werkstoff 59:53–59.CrossrefGoogle Scholar

  • Gerardin, Ph. (2016) New alternatives for wood preservation based on thermal and chemical modification on wood – a review. Ann. Forest Sci. 73:559–570.CrossrefGoogle Scholar

  • González-Peña, M.M., Curling, S.F., Hale, M.D.C. (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degrad. Stability 4:2184–2193.Google Scholar

  • Grinins, J., Andersons, B., Biziks, V., Andersone, I., Dobele, G. (2013) Analytical pyrolysis as an instrument to study the chemical transformations of hydrothermally modified wood. J. Anal. Appl. Pyrol. 103:36–41.CrossrefGoogle Scholar

  • Grinins, J., Andersons, B., Irbe, I., Andersone, I., Meija-Feldmane, A., Janberga, A., Pavlovics, G., Sansonetti, E. (2016a) Thermo-hydro treated (THT) birch veneers for producing plywood with improved properties. Holzforschung, 70:739–746.Google Scholar

  • Grinins, J., Irbe, I., Andersons, B., Andersone, I., Meija-Feldmane, A., Janberga, A., Pavlovics, G., Sansonetti, E. (2016b) Thermo-hydro treated (THT) birch plywood with improved service properties. Int. Wood Prod. J. 7:181–187.CrossrefGoogle Scholar

  • Heigenmoser, A., Liebner, F., Windeisen, E., Richter, K. (2013) Investigation of thermally treated beech (Fagus sylvatica) and spruce (Picea abies) by means of multifunctional analytical pyrolysis-GC/MS. J. Anal. Appl. Pyrol. 100:117–126.CrossrefGoogle Scholar

  • Ibbett, R., Gaddipati, S., Davies, S., Hill, S., Tucker, G. (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technol. 102:9272–9278.CrossrefGoogle Scholar

  • Kamdem, P.D., Pizzi, A., Jermannaud, A. (2002) Durability of heat-treated wood. Holz Roh- Werkstoff 60:1–6.CrossrefGoogle Scholar

  • Kollmann, F., Fengel, D. (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkstoff 23:461–468.CrossrefGoogle Scholar

  • Košikova, B., Hricovini, M., Cosentino, C. (2010) Interaction of lignin and polysaccharides in beech wood (Fagus sylvatica) during drying processes. Wood Sci. Technol. 33:373–380.Google Scholar

  • Li, J., Henriksson, G., Gellerstedt, G. (2007) Lignin depolymerization/ repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol. 98:3061–3068.CrossrefGoogle Scholar

  • Meier, D., Fortmann, I., Odermatt, J., Faix, O. (2005) Discrimination of genetically modified poplar clones by analytical pyrolysis-gas chromatography and principal component analysis. J. Anal. Appl. Pyrol. 74:129–137.CrossrefGoogle Scholar

  • Niemz, P., Hofmann, T., Retfalvi, T. (2010) Investigation of chemical changes in the structure of thermally modified wood. Maderas Ciencia y Technologia 12:69–78.Google Scholar

  • Nuopponen, M., Vuorinen, T., Jämsä, S., Viitaniemi, P. (2005) Thermal modification of softwood studied by FT-IR and UV resonance Raman spectroscopy. J. Wood Chem. Technol. 24:13–26.CrossrefGoogle Scholar

  • Pfriem, A. (2006) Untersuchungen zum Materialverhalten thermisch modifizierter Hölzer für deren Verwendung im Musikinstrumenten. Ph.D. Dissertation. TU Dresden, Germany, 2006.Google Scholar

  • Rodrigues, J., Meier, D., Faix, O., Pereira, H. (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucaliptus globulus wood lignin by analytical pyrolysis. J. Anal. Appl. Pyrol. 48:121–128.CrossrefGoogle Scholar

  • Rowell, R.M., Ibach, R.E., McSweeny, J., Nilsson, T. (2009) Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mat Sci. Eng. 4:14–22.CrossrefGoogle Scholar

  • Salmen, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.Google Scholar

  • Sandermann, W., Augustin, H. (1963) Chemische Untersuchungen über die thermische Zersetzung von Holz. Erste Mitteilung – Stand der Forschung. Holz Roh- Werkstoff 21:256–265.CrossrefGoogle Scholar

  • Sandermann, W., Augustin, H. (1964) Chemische Untersuchungen über die thermische Zersetzung von Holz. Dritte Mitteilung – Chemische Untersuchung des Zersetzungsablaufes. Holz Roh- Werkstoff 22:377–386.CrossrefGoogle Scholar

  • Stamm, A.J. (1956) Thermal degradation of wood and cellulose. Ind. Eng. Chem. 48:413–417.CrossrefGoogle Scholar

  • Syverud, K., Leirset, I., Vaaler, D. (2003) Characterization of carbohydrates in chemical pulps by pyrolysis gas chromatography/mass spectrometry. J. Anal. Appl. Pyrol. 67:381–391.CrossrefGoogle Scholar

  • TAPPI T222 om-06 (2011) Acid-insoluble lignin in wood and pulp.Google Scholar

  • Tjeerdsma, B.F., Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkstoff 63:102–111.CrossrefGoogle Scholar

  • Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkstoff 56:149–153.CrossrefGoogle Scholar

  • Tsuge, S. (1995) Analytical pyrolysis – past, present and future. J. Anal. Appl. Pyrol. 32:1–6.CrossrefGoogle Scholar

  • Weiland, J.J., Guyonnet, R. (2003) Study of chemical modification and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh- Werkstoff 61:216–220.CrossrefGoogle Scholar

  • Welzbacher, C.R., Brischke, C., Rapp, A.O. (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater. Sci. Eng. 2:66–76.CrossrefGoogle Scholar

  • Wikberg, H. Advanced Solid State NMR Spectroscopic Techniques in the Study of Thermally Modified Wood. Doctoral thesis. University of Helsinki, Finland, 2004.Google Scholar

  • Wikberg, H., Maunu, S.L. (2004) Characterisation of thermally modified hard and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 58:461–466.CrossrefGoogle Scholar

  • Willems, W., Gerardin, P., Militz, H. (2013) The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. Polymer Degrad. Stability 98:2140–2145.CrossrefGoogle Scholar

  • Winandy, J.E., Lebow, P.K. (2001) Modelling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood Fiber Sci. 33:291–234.Google Scholar

  • Windeisen, E., Wegener, G. (2008) Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 27:157–162.CrossrefGoogle Scholar

  • Windeisen, E., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.CrossrefGoogle Scholar

  • Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63:773–778.Google Scholar

  • Zakis, G.F. Functional Analysis of Lignins and their Derivatives. TAPPI Press, Atlanta, 1994.Google Scholar

  • Zaman, A., Alen, R., Kolilainen, R. (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 220–230°C. Wood Fiber Sci. 32:138–143.Google Scholar

About the article

Received: 2018-07-31

Accepted: 2019-01-16

Published Online: 2019-03-05


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors gratefully acknowledge the financial support from the European Regional Development Fund project “Wood with improved service properties due to combination of thermal modification and impregnation” No.1.1.1.1/16/A/133.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180169, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0169.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in