Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Changes in sorption and electrical properties of wood caused by fungal decay

Christian Brischke
  • Corresponding author
  • University of Goettingen, Wood Biology and Wood Products, Buesgenweg 4, D-37077 Goettingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Simon Stricker
  • Leibniz University Hannover, Faculty of Architecture and Landscape Sciences, Herrenhauser Strasse 8, D-30419 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Linda Meyer-Veltrup
  • Heinz-Piest-Institute for Craftsmen Techniques, Wilhelm-Busch-Strasse 18, D-30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lukas Emmerich
  • University of Goettingen, Wood Biology and Wood Products, Buesgenweg 4, D-37077 Goettingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-25 | DOI: https://doi.org/10.1515/hf-2018-0171

Abstract

As wet wood is prone to degradation by wood-destroying fungi, the monitoring of the moisture content (MC) of wood can be used to quantify the risk of fungal infestation. Fungal decay alters the sorption and electrical conductivity of wood, and thus the goal of the present study was to measure the electrical resistance (R) of wood after fungal decay as a function of MC. Scots pine sapwood (Pinus sylvestris L.) and European beech wood (Fagus sylvatica L.) were submitted to decay by Coniophora puteana (a brown rot fungus, BR) and Trametes versicolor (a white rot fungus, WR) and the mass loss (ML) due to the fungal metabolism was measured. The sorption isotherms were determined by dynamic vapor sorption (DVS), and comparative gravimetric- and R-based MC measurements were conducted. BR and WR reduced the sorption of wood and lowered its R in the hygroscopic range, where the decay led to an overestimation of wood MC, while wood MC was dramatically underestimated above fiber saturation (FS). Specimens showed an MC well above FS if measured directly after harvesting and an increased R compared to undecayed wood at a given MC. BR-decayed specimens were dried and rewetted, and such specimens showed an elevated R beyond FS. In the case of WR-decayed wood, the R was reduced at a given MC.

Keywords: adsorption; brown rot; conductivity; desorption; dynamic vapor sorption (DVS); electrical resistance; fungal decay; hysteresis; moisture monitoring; sorption; white rot; wood moisture content measurements

References

  • Ammer, U. (1963) Untersuchungen über die Sorption pilzbefallenen Holzes. Holz Roh-Werkst. 12:465–470.Google Scholar

  • Anagnost, S.E., Smith, W.B. (2007) Hygroscopicity of decayed wood: implications for weight loss determinations. Wood Fiber Sci. 29:299–305.Google Scholar

  • Bavendamm, W., Reichelt, H. (1938) Die Abhängigkeit des Wachstums holzzersetzender Pilze vom Wassergehalt des Nährsubstrates. Arch. Mikrobiol. 9:486–544.CrossrefGoogle Scholar

  • Björngrim, N., Hagman, O., Wang, X.A. (2016) Moisture content monitoring of a timber footbridge. BioResources 11:3904–3913.Google Scholar

  • Boardman, C.R., Glass, S.V., Carll, C.G. (2011) Moisture meter calibrations for untreated and ACQ-treated southern yellow pine lumber and plywood. J. Test. Eval. 40:184–193.Google Scholar

  • Brischke, C., Lampen, S.C. (2014) Resistance based moisture content measurements on native, modified, and preservative treated wood. Eur. J. Wood Prod. 72:289–292.CrossrefGoogle Scholar

  • Brischke, C., Meyer-Veltrup, L., Soetbeer, A. (2018) Moisture requirements of wood decay fungi – review on methods, thresholds, and experimental limitations. Holztechnol. 59:36–42.Google Scholar

  • Brischke, C., Rapp, A.O., Bayerbach, R. (2008a) Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes. Build. Environ. 43:1566–1574.CrossrefGoogle Scholar

  • Brischke, C., Welzbacher, C.R., Huckfeldt, T. (2008b). Influence of fungal decay by different basidiomycetes on the structural integrity of Norway spruce wood. Holz Roh-Werkst. 66:433–438.CrossrefGoogle Scholar

  • Brischke, C., Sachse, K.A., Welzbacher, C.R. (2014) Modeling the influence of thermal modification on the electrical conductivity of wood. Holzforschung 68:185–193.Google Scholar

  • Buro, A. (1954) Untersuchungen über den Abbau von Kiefern: und Buchenholz durch holzzerstörende Pilze und deren Einfluß auf einige physikalische Eigenschaften des Holzes. Holz Roh- Werkst. 12:258–267.CrossrefGoogle Scholar

  • Chauhan, S.S., Nagaveni, H.C. (2009) Moisture adsorption behaviour of decayed rubber wood. J. Inst. Wood Sci. 19:1–6.CrossrefGoogle Scholar

  • Christensen, G.N., Kelsey, K.E. (1959) Die Sorption von Wasserdampf durch die chemischen Bestandteile des Holzes. Holz Roh-Werkst. 17:189–203.CrossrefGoogle Scholar

  • Connolly, J.H., Jellison, J. (1997) Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Inter. Biodeter. Biodegrad. 39:181–188.CrossrefGoogle Scholar

  • Cowling, E.B. (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi (No. 1258). US Dept. of Agriculture.Google Scholar

  • Curling, S.F., Clausen, C.A., Winandy, J.E. (2002) Experimental method to quantify progressive stages of decay of wood by basidiomycete fungi. Int. Biodeter. Biodegrad. 49:13–19.CrossrefGoogle Scholar

  • Dai, G., Ahmet, K. (2001) Long-term monitoring of timber moisture content below the fiber saturation point using wood resistance sensors. For. Prod. J. 51:52–58.Google Scholar

  • Du, Q.P. (1991) Einfluss holzartenspezifischer Eigenschaften auf die elektrische Leitfähigkeit wichtiger Handelshölzer. Doctoral thesis. University Hamburg, Department Biology, Hamburg.Google Scholar

  • Fernández-Golfín, J.I., Conde, M., Fernandez-Golfin, J.J., Calvo, R., Baonza, M.V., y Palacios, P.D.P. (2012) Curves for the estimation of the moisture content of ten hardwoods by means of electrical resistance measurements. Forest Systems 21:121–127.CrossrefGoogle Scholar

  • Flournoy, D.S., Kirk, T.K., Highley, T.L. (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388.CrossrefGoogle Scholar

  • Fortino, S., Genoese, A., Genoese, A., Nunes, L., Palma, P. (2013) Numerical modelling of the hygro-thermal response of timber bridges during their service life: a monitoring case-study. Constr. Build. Mat. 47:1225–1234.CrossrefGoogle Scholar

  • Fredriksson, M., Thybring, E.E. (2018) Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 25:4477–4485.CrossrefGoogle Scholar

  • Fredriksson, M., Wadsö, L., Johansson, P. (2013) Small resistive wood moisture sensors: a method for moisture content determination in wood structures. Eur. J. Wood Wood Prod. 71:515–524.CrossrefGoogle Scholar

  • Glass, S.V., Zelinka, S.L. (2010) Moisture relations and physical properties of wood. In: Wood Handbook. Wood as an Engineering Material. Ed. Ross, R.J. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.Google Scholar

  • González-Peña, M.M., Curling, S.F., Hale, M.D. (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym. Degr. Stab. 94:2184–2193.CrossrefGoogle Scholar

  • Gradeci, K., Baravalle, M., Time, B., Köhler, J. (2017) Cost-optimisation for Timber Façades Exposed to Rot Decay. In 12th International Conference on Structural Safety & Reliability Vienna.Google Scholar

  • Green III, F., Clausen, C.A. (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int. Biodeter. Biodegr. 51:145–149.CrossrefGoogle Scholar

  • Höpken, M. (2015) Untersuchungen zu Wachstum und Feuchtetransport von Hausfäulepilzen anhand gestapelter Holzklötzchen. Master thesis. University Hamburg, Hamburg, Germany.Google Scholar

  • Huckfeldt, T., Schmidt, O. (2006) Hausfäule- und Bauholzpilze. Diagnose und Sanierung. Müller, Cologne.Google Scholar

  • Huckfeldt, T., Schmidt, O., Quader, H. (2005) Ökologische Untersuchungen am Echten Hausschwamm und weiteren Hausfäulepilzen. Holz Roh- Werkst. 63:209–219.CrossrefGoogle Scholar

  • Jakes, J.E., Plaza, N., Stone, D.S., Hunt, C.G., Glass, S.V., Zelinka, S.L. (2013) Mechanism of transport through wood cell wall polymers. J. For. Prod. Ind. 2:10–13.Google Scholar

  • James, W.L. (1963) Electric moisture meters for wood. U.S. Forest Service Research Note FPL-08. Madison, WI: US Forest Service Forest Products Laboratory.Google Scholar

  • James, W.L. (1988) Electric moisture meters for wood. Forest Products Laboratory General Technical Report FPL-GTR-6. Madison, WI: US Forest Service Forest Products Laboratory.Google Scholar

  • Jones, H.L., Worrall, J.J. (1995) Fungal biomass in decayed wood. Mycologia 87:459–466.CrossrefGoogle Scholar

  • Karppanen, O., Venäläinen, M., Harju, A.M., Laakso, T. (2008) The effect of brown-rot decay on water adsorption and chemical composition of Scots pine heartwood. Ann. For. Sci. 65:610.CrossrefGoogle Scholar

  • Kirk, T.K., Highley, T.L. (1973) Quantitative changes in structural components of conifer woods during decay by white-and brown-rot fungi. Phytopathology 63:1338–1342.CrossrefGoogle Scholar

  • Kirker, G.T., Bishell, A.B., Zelinka, S.L. (2016) Electrical properties of wood colonized by Gloeophyllum trabeum. Int. Biodeter Biodegr 114:110–115.CrossrefGoogle Scholar

  • Kirker, G.T., Zelinka, S.L., Gleber, S.-C., Vine, D., Finney, L., Chen, S., Hong, Y.P., Uyarte, O., Vogt, S., Jellison, J., Goodell, B., Jakes, J.E. (2017) Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction. Scientific reports 7:41798.CrossrefPubMedGoogle Scholar

  • Kržišnik, D., Brischke, C., Lesar, B., Thaler, N., Humar, M. (2018) Performance of wood in the Franja partisan hospital. Wood Mat. Sci. Eng. 14:24–32.Google Scholar

  • Lebow, S., Lebow, P. (2015) Use of resistance-type moisture meter above the fiber saturation point. In: Proceedings 111th Annual Meeting of the American Wood Protection Association. Ed. McCown, C. Asheville, NC, April 12–14. pp. 43–48.Google Scholar

  • Mäkelä, M., Galkin, S., Hatakka, A., Lundell, T. (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enz. Microb. Technol. 30:542–549.CrossrefGoogle Scholar

  • Meyer, L., Brischke, C. (2015) Fungal decay at different moisture levels of selected European-grown wood species. Int. Biodeter. Biodegr. 103:23–29.CrossrefGoogle Scholar

  • Meyer, L., Brischke, C., Kasselmann, M. (2015) Holzfeuchte-Monitoring im Rahmen von Dauerhaftigkeitsprüfungen – Praktische Erfahrungen aus Freilandversuchen. Holztechnologie 56:11–19.Google Scholar

  • Morrell, J.J., Winandy, J.E. (1993) Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci. 25:278–288.Google Scholar

  • Morris, P.I., Dickinson, D.J. (1984) The effect of moisture content on the electrical resistance of timber as detected by a pulsed current resistance meter (Shigometer). In: Proceedings of the International Research Group on Wood Preservation, IRG-WP 84-2212. International Research Group on Wood Preservation, Stockholm, Sweden.Google Scholar

  • Ostrofsky, A., Jellison, J., Smith, K.T., Shortle, W.C. (1997) Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi. Can. J. For. Res. 27:567–571.CrossrefGoogle Scholar

  • Otten, K.A., Brischke, C., Meyer, C. (2017) Material moisture content of wood and cement mortars – electrical resistance-based measurements in the high ohmic range. Constr. Build. Mat. 153:640–646.CrossrefGoogle Scholar

  • Pandey, K.K., Pitman, A.J. (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeter. Biodegr. 52:151–160.CrossrefGoogle Scholar

  • Pandey, K.K., Pitman, A.J. (2004) Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. J. Polym. Sci. Part A: Polym. Chem. 42:2340–2346.CrossrefGoogle Scholar

  • Papadopoulos, A.N. (2012) Sorption of acetylated pine wood decayed by brown rot, white rot and soft rot: different fungi – different behaviours. Wood Sci Technol 46:919–926.CrossrefGoogle Scholar

  • Robbers, K., Fromm, J., Melcher, E. (2018) Evaluation of pedestrian timber bridges in the city of Hamburg with particular consideration of design detailing. Wood Mat. Sci. Eng. 13:174–183.CrossrefGoogle Scholar

  • Schmidt, O. Wood and Tree Fungi. Springer, Berlin Heidelberg, 2006.Google Scholar

  • Schultze-Dewitz, G., Lenhart, K., Peschka, F. (1969) Das Sorbtionsverhalten des Holzes verschiedener Kiefernarten und der Fichte nach Angriff durch Braunfäulepilze (Basidiomyceten). Holztechnol. 10:113–118.Google Scholar

  • Shigo, A.L., Shigo, A. Detection of Discoloration and Decay in Living Trees and Utility Poles. Forest Products Service, US Department of Agriculture, Northeastern Forest Experiment Station, 1974.Google Scholar

  • Shortle, W.C. (1982) Decaying Douglas-fir wood: ionization associated with resistance to a pulsed electric current. Wood Sci. 15:29–32.Google Scholar

  • Shortle, W.C., Smith, K.T. (1987) Electrical properties and rate of decay in spruce and fir wood. Phytopathol. 77:811–814.CrossrefGoogle Scholar

  • Stienen, T., Schmidt, O., Huckfeldt, T. (2014) Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung 68:9–15.Google Scholar

  • Theden, G. (1941) Untersuchungen über die Feuchtigkeitsansprüche der wichtigsten in Gebäuden auftretenden holzzerstörenden Pilze. Dissertation. Friedrich Wilhelms-University, Berlin. Angewandte Botanik 23:189–253.Google Scholar

  • Thybring, E.E. (2017) Water relations in untreated and modified wood under brown-rot and white-rot decay. Int. Biodeter. Biodegr. 118:134–142.CrossrefGoogle Scholar

  • Venkateswaran, A. (1974) The interdependence of the lignin content and electrical properties of wood. Wood Fib. Sci. 6:46–52.Google Scholar

  • Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:773–778.Google Scholar

  • Zabel, R., Morell, J.J. Wood Microbiology: Decay and its Prevention. Academic Press, San Diego, 1992.Google Scholar

  • Zelinka, S.L., Glass, S.V., Stone, D.S. (2008) A percolation model for electrical conduction in wood with implications for wood-water relations. Wood Fiber Sci. 40: 544–552.Google Scholar

  • Zeller, S.M. (1920) Humidity in relation to moisture imbibition by wood and to spore germination on wood. Annals of the Missouri Botanical Garden 7:51–74.CrossrefGoogle Scholar

About the article

Received: 2018-07-31

Accepted: 2018-11-27

Published Online: 2018-12-25


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180171, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0171.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in