Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Variation of the contents of biphenyl structures in lignins among wood species

Haruka Hirayama
  • Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takuya Akiyama
  • Corresponding author
  • Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Akari Tamai
  • Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Deded S. Nawawi
  • Department of Forest Products, Faculty of Forestry, Bogor Agricultural University (IPB), Kampus IPB Darmaga Bogor 16680, Indonesia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wasrin Syafii
  • Department of Forest Products, Faculty of Forestry, Bogor Agricultural University (IPB), Kampus IPB Darmaga Bogor 16680, Indonesia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomoya Yokoyama
  • Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuji Matsumoto
  • Wood Chemistry Laboratory, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-25 | DOI: https://doi.org/10.1515/hf-2018-0196

Abstract

Biphenyl structures (5–5 linkages) are one of the significant structural units in plant cell wall lignin. They can potentially play a role in providing branch points in lignins and influence the polymer structure of lignins. Variation of the biphenyl content was investigated for 21 wood species by alkaline nitrobenzene oxidation. The total yields of biphenyl-type products were similar among the six softwoods, and at least 6% of the phenylpropanoid units in lignin were involved in the biphenyl structures (>0.06 per C6-C3). The biphenyl product yield of the 15 hardwoods ranged widely (0.002–0.05 per C6-C3) and was lower in species having a higher syringyl/guaiacyl ratio (i.e. a species with less guaiacyl units). In addition, the proportion of biphenyl products in all guaiacyl-type products was not constant but decreased as the proportion of syringyl units increased. This indicates that the content of guaiacyl units is not likely the only factor influencing the biphenyl content.

Keywords: 5-5 linkage; alkaline nitrobenzene oxidation; angiosperm; guaiacyl; gymnosperm; lignification; syringyl

References

  • Adler, E. (1977) Lignin chemistry – past, present and future. Wood Sci. Technol. 11:169–218.CrossrefGoogle Scholar

  • Akiyama, T., Ralph, J. (2009) Exploring branch-points in lignin; NMR chemical shift characteristics of nonphenolic vs phenolic dibenzodioxocin model compounds. Proceeding of the 15th International Symposium on Wood, Fibre and Pulping Chemistry ISWFPC. Oslo, Norway. Proceeding ID: O-008.Google Scholar

  • Akiyama, T., Goto, H., Nawawi, D.S., Syafii, W., Matsumoto, Y., Meshitsuka, G. (2005) Erythro/threo ratio of β-O-4-structures as an important structural characteristic of lignin. Part 4: variation in the erythro/threo ratio in softwood and hardwood lignins and its relation to syringyl/guaiacyl ratio. Holzforschung 59:276–281.Google Scholar

  • Ämmälahti, E., Brunow, G., Bardet, M., Robert, D., Kilpeläinen, I. (1998) Identification of side-chain structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy. J. Agric. Food. Chem. 46:5113–5117.CrossrefGoogle Scholar

  • Bose, S.K., Wilson, K.L., Francis, R.C., Aoyama, M. (1998) Lignin analysis by permanganate oxidation. I. Native spruce lignin. Holzforschung 52:297–303.CrossrefGoogle Scholar

  • Brunow, G. (2001) Methods to reveal the structure of lignin. In: Biopolymers, Lignin, Humic Substances and Coal. Eds. Hofrichter, M., Steinbüchel, A. Wiley-VHC, Weinheim, Germany. pp. 89–116.Google Scholar

  • Brunow, G., Karhunen, P., Lundquist, K., Olson, S., Stomberg, R. (1995) Investigation of lignin models of the biphenyl type by X-ray crystallography and NMR spectroscopy. J. Chem. Crystallogr. 25:1–10.CrossrefGoogle Scholar

  • Capanema, E.A., Balakshin, M.Y., Kadla, J.F. (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J. Agric. Food. Chem. 52:1850–1860.CrossrefPubMedGoogle Scholar

  • Crestini, C., Melone, F., Sette, M., Saladino, R. (2011) Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928–3935.CrossrefWeb of SciencePubMedGoogle Scholar

  • Drumond, M., Aoyama, M., Chen, C.L., Robert, D. (1989) Substituent effects on C-13 chemical-shifts of aromatic carbons in biphenyl type lignin model compounds. J. Wood Chem. Technol. 9:421–441.CrossrefGoogle Scholar

  • Hwang, B.H., Sakakibara, A. (1979) Hydrogenolysis of protolignin. XV. Further isolation of some compounds from hardwood lignin. Mokuzai Gakkaishi 25:647–652.Google Scholar

  • Iiyama, K., Lam, T.B.T. (1990) Lignin in wheat internodes 1. The reactivities of lignin units during alkaline nitrobenzene oxidation. J. Sci. Food Agric. 51:481–491.CrossrefGoogle Scholar

  • Karhunen, P., Rummakko, P., Sipilä, J., Brunow, G. (1995) Dibenzodioxocins; A novel type of linkage in softwood lignins. Tetrahedron Lett. 36:169–170.CrossrefGoogle Scholar

  • Kishimoto, T., Chiba, W., Saito, K., Fukushima, K., Uraki, Y., Ubukata, M. (2010) Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. J. Agric. Food. Chem. 58:895–901.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Lange, W., Faix, O. (1999) Lignin-polyphenol interaction in azobe (Lophira alata) heartwood. A study on milled wood lignin (MWL) and Klason residues. Holzforschung 53:519–524.Google Scholar

  • Leopold, B. (1952) Studies on lignin 3. Oxidation of wood from Picea-abies (L) Karst (norway spruce) with nitrobenzene and alkali. Acta Chem. Scand. 6:38–48.CrossrefGoogle Scholar

  • Li, Y.D., Akiyama, T., Yokoyama, T., Matsumoto, Y. (2016) NMR assignment for diaryl ether structures (4-O-5 structures) in pine wood lignin. Biomacromolecules 17:1921–1929.Web of ScienceCrossrefGoogle Scholar

  • Lourenço, A., Rencoret, J., Chemetova, C., Gominho, J., Gutiérrez, A., del Río, J.C., Pereira, H. (2016) Lignin composition and structure differs between xylem, phloem and phellem in quercus suber L. Front. Plant Sci. 7:1612–1626.PubMedWeb of ScienceGoogle Scholar

  • Lundquist, K., Li, S. (1999) Structural analysis of lignin and lignin degradation products. 10th International Symposium on Wood, and Pulping Chemistry ISWFPC. Yokohama, Japan. pp. 2–10.Google Scholar

  • Meshitsuka, G., Nakano, J. (1985) Structural characteristics of compound middle lamella lignin. J. Wood Chem. Technol. 5:391–404.CrossrefGoogle Scholar

  • Nawawi, D.S., Syafii, W., Akiyama, T., Matsumoto, Y. (2016) Characteristics of guaiacyl-syringyl lignin in reaction wood in the gymnosperm Gnetum gnemon L. Holzforschung 70:593–602.Web of ScienceGoogle Scholar

  • Parkas, J., Brunow, G., Lundquist, K. (2007) Quantitative lignin analysis based on permanganate oxidation. Bioresources 2:169–178.Google Scholar

  • Peng, J.P., Lu, F.C., Ralph, J. (1998) The DFRC method for lignin analysis. 4. Lignin dimers isolated from DFRC-degraded loblolly pine wood. J. Agric. Food. Chem. 46:553–560.PubMedCrossrefGoogle Scholar

  • Pew, J.C. (1955) Nitrobenzene oxidation of lignin model compounds, spruce wood and spruce native lignin. J. Am. Chem. Soc. 77:2831–2833.CrossrefGoogle Scholar

  • Pew, J.C. (1963) Evidence of a biphenyl group in lignin. J. Org. Chem. 28:1048–1054.CrossrefGoogle Scholar

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W. (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3:29–60.CrossrefGoogle Scholar

  • Ralph, J., Akiyama, T., Kim, H., Lu, F.C., Schatz, P.F., Marita, J.M., Ralph, S.A., Reddy, M.S.S., Chen, F., Dixon, R.A. (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J. Biol. Chem. 281:8843–8853.CrossrefPubMedGoogle Scholar

  • Rencoret, J., Marques, G., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Martínez, Á.T., del Río, J.C. (2009) Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind. Crops Prod. 30:137–143.Web of ScienceCrossrefGoogle Scholar

  • Tamai, A., Goto, H., Akiyama, T., Matsumoto, Y. (2015) Revisiting alkaline nitrobenzene oxidation: quantitative evaluation of biphenyl structures in cedar wood lignin (Cryptomeria japonica) by a modified nitrobenzene oxidation method. Holzforschung 69:951–958.Web of ScienceGoogle Scholar

  • Tanaka, J., Kondo, T. (1958) Studies on degradation of lignin. II. Nitorbenzene oxidation products of hardwood lignin. Mokuzai Gakkaishi 4:34–37.Google Scholar

  • Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Geddes, B., Lu, F., Ralph, J. (2015) Syringyl lignin production in conifers: proof of concept in a pine tracheary element system. Proc. Natl. Acad. Sci. 112:6218–6223.CrossrefGoogle Scholar

  • Yue, F.X., Lu, F.C., Ralph, S., Ralph, J. (2016) Identification of 4-O-5-units in softwood lignins via definitive lignin models and NMR. Biomacromolecules 17:1909–1920.Web of ScienceCrossrefPubMedGoogle Scholar

  • Yue, F., Lu, F., Regner, M., Sun, R., Ralph, J. (2017) Lignin-derived thioacidolysis dimers: reevaluation, new products, authentication, and quantification. ChemSusChem 10:830–835.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2018-09-03

Accepted: 2018-12-06

Published Online: 2019-01-25


Funding Source: Japan Science and Technology Agency

Award identifier / Grant number: JPMJPR12B1

Funding Source: Japan Society for the Promotion of Science

Award identifier / Grant number: 15J08385

This work was supported by the Japan Science and Technology Agency (JST), PRESTO (JPMJPR12B1), the Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Research Fellow (15J08385), and the Grant-in-Aid for Challenging Exploratory Research (15K14767) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180196, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0196.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in