Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2017: 2.079

CiteScore 2017: 1.94

SCImago Journal Rank (SJR) 2017: 0.709
Source Normalized Impact per Paper (SNIP) 2017: 0.979

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Evolution of extractive composition in thermally modified Scots pine during artificial weathering

Haiying Shen
  • MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Haidian, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jiaqi Xu
  • MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Haidian, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jinzhen Cao
  • Corresponding author
  • MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Haidian, Beijing 100083, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun Jiang
  • College of Materials Science and Engineering, Nanjing Forestry University, Xuanwu District, Nanjing 210037, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shaodi Zhang
  • MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Haidian, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing Xue
  • MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Haidian, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liangliang Zhang
  • MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Haidian, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-03-15 | DOI: https://doi.org/10.1515/hf-2018-0216

Abstract

In order to clarify the evolution and role of extractives in thermally modified wood during the process of weathering, the compositions of acetone extractives from thermally modified Scots pine after exposure in an accelerated weathering tester for different durations were determined using gas chromatography-mass spectrometry (GC-MS). Fatty acids and phenolics were proved to be the main types of extractives in weathered thermally modified Scots pine, and some sugars, terpenes and alcohols were also collected. With the progress of weathering, the content of fatty acids decreases significantly while that of phenolics increases. The reduction or even elimination of the fatty acids is presumed to be a physical process, namely, a discharge from wood during exposure to radiation and elevated temperature. The increase of phenolic extractives is mainly due to the photodegradation of other wood components. Phenolic degradation products play the role as a “barrier” against further photodegradation of thermally modified wood, among which vanillin or its derivatives appeared to be the most predominant and important ones.

This article offers supplementary material which is provided at the end of the article.

Keywords: extractive; GC-MS; phenolics; thermally modified wood; vanillin; weathering

References

  • Altgen, M., Militz, H. (2016) Photodegradation of thermally-modified Scots pine and Norway spruce investigated on thin micro-veneers. Eur. J. Wood Wood Prod. 74:185–190.Web of ScienceCrossrefGoogle Scholar

  • Baysal, E., Degi̇rmentepe, S., Si̇msek, H. (2014) Some surface properties of thermally modified Scots pine after artificial weathering. Maderas Cienc. Tecnol. 16:355–364.Web of ScienceGoogle Scholar

  • Belt, T., Keplinger, T., Hänninen, T., Rautkari, L. (2017) Cellular level distributions of Scots pine heartwood and knot heartwood extractives revealed by Raman spectroscopy imaging. Ind. Crops Products 108:327–335.Web of ScienceCrossrefGoogle Scholar

  • Chang, T.C., Chang, H.T., Wu, C.L., Chang, S.T. (2010a) Influences of extractives on the photodegradation of wood. Polym. Degrad. Stabil. 95:516–521.CrossrefWeb of ScienceGoogle Scholar

  • Chang, T.C., Chang, H.T., Wu, C.L., Lin, H.Y., Chang, S.T. (2010b) Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym. Degrad. Stabil. 95:1518–1522.CrossrefWeb of ScienceGoogle Scholar

  • Chang, T.C., Lin, H.Y., Wang, S.Y., Chang, S.T. (2014) Study on inhibition mechanisms of light-induced wood radicals by Acacia confusa heartwood extracts. Polym. Degrad. Stabil. 105:42–47.Web of ScienceCrossrefGoogle Scholar

  • Chen, J., Liu, W., Song, Z., Wang, H., Xie, Y. (2018) Photocatalytic degradation of β-O-4 lignin model compound by In2S3 nanoparticles under visible light irradiation. Bioenerg. Res. 11:166–173.CrossrefWeb of ScienceGoogle Scholar

  • Colom, X., Carrillo, F., Nogués, F., Garriga, P. (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stabil. 80:543–549.CrossrefGoogle Scholar

  • Dey, P.M., Harborne, J.B. Methods in Plant Biochemistry, Academic Press, San Diego, CA, USA, 1991.Google Scholar

  • Eriksson, D., Arshadi, M., Kataria, R., Bergsten, U. (2018) Lipophilic extractives in different tree fractions and forestry assortments of Pinus sylvestris due for thinning or final cutting. Scand. J. Forest Res. 33:594–602.CrossrefWeb of ScienceGoogle Scholar

  • Esteves, B., Graca, J., Pereira, H. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.Web of ScienceGoogle Scholar

  • Fengel, F., Wegener, G. Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, 1983.Google Scholar

  • Fernandez, M.P., Watson, P.A., Breuil, C. (2001) Gas chromatography-mass spectrometry method for the simultaneous determination of wood extractive compounds in quaking aspen. J. Chromatogr. A 922:225–233.CrossrefPubMedGoogle Scholar

  • George, B., Suttie, E., Merlin, A., Deglise, X. (2005) Photodegradation and photostabilisation of wood – the state of the art. Polym. Degrad. Stabil. 88:268–274.CrossrefGoogle Scholar

  • George, L.O., Radha, H.R., Somasekariah, B.V. (2017) In vitro anti-diabetic activity and GC-MS analysis of bioactive compounds present in the methanol extract of Kalanchoe pinnata. Indian J. Chem. B 57:1213–1221.Google Scholar

  • Hon, D.N.S. (1984) ESCA study of oxidized wood surfaces. J. Appl. Polym. Sci. 29:2777–2784.CrossrefGoogle Scholar

  • Hon, D.N.S., Chang, S.T. (1984) Surface degradation of wood by ultraviolet light. J. Polym. Sci. A: Polym. Chem. 22:2227–2241.Google Scholar

  • Hu, C., Jiang, G., Zhou, J., Xiao, M., Yi, Z. (2012) Effects of the thickness of the heat-treated wood specimen on water-soluble extractives and mechanical properties of merbau heartwood. BioResources 8:603–611.Google Scholar

  • Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Pichette, A. (2012) Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym. Degrad. Stabil. 97:1197–1214.CrossrefWeb of ScienceGoogle Scholar

  • Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., Krause, C. (2013) Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering. Appl. Surf. Sci. 264: 117–127.CrossrefWeb of ScienceGoogle Scholar

  • Kocaefe, D., Huang, X., Kocaefe, Y., Boluk, Y. (2013) Quantitative characterization of chemical degradation of heat-treated wood surfaces during artificial weathering using XPS. Surf. Interface Anal. 45:639–649.Web of ScienceCrossrefGoogle Scholar

  • Kymäläinen, M., Mlouka, S.B., Belt, T., Merk, V., Liljeström, V., Hänninen, T., Uimonen, T., Kostiainen, M., Rautkari, L. (2018) Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high-pressure reactor under saturated steam. J. Mater. Sci. 53:3027–3037.CrossrefWeb of ScienceGoogle Scholar

  • Mangindaan, B., Matsushita, Y., Aoki, D., Yagami, S., Kawamura, F., Kawamura, K. (2017) Analysis of distribution of wood extractives in Gmelina arborea by gas chromatography and time-of-flight secondary ion mass spectrometry. Holzforschung 71:299–305.Web of ScienceGoogle Scholar

  • Moore, R.K., Mann, D., Epstein, G., Wagner, P., Hinkforth, B., Hyunji, J. (2017a) Comparative characterization of extractives in Alaskan Yellow, Eastern Red, and Western Red Cedars. 19th International symposium on wood, fibre and pulping chemistry, Porto Seguro, BA, Brazil.Google Scholar

  • Moore, R.K., Mann, D., Epstein, G., Wagner, P., Hinkforth, B., Hyunji, J. (2017b) Characterization of extractives in durable and non-durable hardwoods: Black locust, Catalpa, and Honey mesquite. 19th International symposium on wood, fibre and pulping chemistry, Porto Seguro, BA, Brazil.Google Scholar

  • Nuopponen, M., Vuorinen, T., Jämsä, S., Viitaniemi, P. (2003) The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Sci. Technol. 37:109–115.CrossrefGoogle Scholar

  • Nuopponen, M., Wikberg, H., Vuorinen, T., Maunu, S.L., Jämsä, S., Viitaniemi, P. (2004) Heat-treated softwood exposed to weathering. J. Appl. Polym. Sci. 91:2128–2134.CrossrefGoogle Scholar

  • Nzokou, P., Kamdem, D.P. (2006) Influence of wood extractives on the photo-discoloration of wood surfaces exposed to artificial weathering. Color Res. Appl. 31:425–434.CrossrefGoogle Scholar

  • Patil, S.V., Argyropoulos, D.S. (2017) Stable organic radicals in lignin: a review. ChemSusChem 10:3284–3303.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Persze, L., Tolvaj, L. (2012) Photodegradation of wood at elevated temperature: colour change. J. Photochem. Photobiol. B 108:44–47.CrossrefGoogle Scholar

  • Piispanen, R., Saranpää, P. (2002) Neutral lipids and phospholipids in scots pine (Pinus sylvestris) sapwood and heartwood. Tree Physiol. 22:661–666.PubMedCrossrefGoogle Scholar

  • Popescu, C.M., Carmen, M.T., Cornelia, V. (2009) XPS characterization of naturally aged wood. Appl. Surf. Sci. 256:1355–1360.Web of ScienceCrossrefGoogle Scholar

  • Sandor, P., Duygu, K., Francois, S., André, P. (2009) Evolution of extractive composition during thermal treatment of Jack pine. J. Wood Chem. Technol. 29: 251–264.Web of ScienceCrossrefGoogle Scholar

  • Shen, H., Cao, J., Sun, W., Peng, Y. (2016) Influence of post-extraction on photostability of thermally modified scots pine wood during artificial weathering. BioResources 11: 4512–4525.Google Scholar

  • Shen, H., Jiang, J., Cao, J., Zhu, Y. (2018a) Performance of thermally modified Scots pine treated with combinations of some modifying chemicals. Wood Fiber Sci. 50: 33–43.Web of ScienceGoogle Scholar

  • Shen, H., Zhang, S., Cao, J., Jiang, J., Xu, J. (2018b) Improving anti-weathering performance of thermally modified wood by TiO2 sol or/and paraffin emulsion. Constr. Build. Mater. 169:372–378.CrossrefWeb of ScienceGoogle Scholar

  • Sivonen, H., Maunu, S.L., Sundholm, F., Jämsä, S., Viitaniemi, P. (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654.Google Scholar

  • Smith, J.D., Kinney, H., Anastasio, C. (2016) Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products. Atmos. Environ. 126:36–44.CrossrefWeb of ScienceGoogle Scholar

  • Srinivas, K., Pandey, K.K. (2012) Photodegradation of thermally modified wood. J. Photochem. Photobiol. B 117:140–145.CrossrefPubMedGoogle Scholar

  • Valette, N., Perrot, T., Sormani, R., Gelhaye, E., Morel-Rouhier, M. (2017) Antifungal activities of wood extractives. Fungal Biol. Rev. 31:113–123.CrossrefWeb of ScienceGoogle Scholar

  • Wallis, A.F.A., Wearne, R.H. (1997) Characterization of resin in radiata pine woods, bisulfite pulps and mill pith samples. Appita J. 50:409–414.Google Scholar

  • Warsta, E., Vuorinen, T., Pitkänen, M. (2009) Addition of bisulphite to lignin α-carbonyl groups: a study on model compounds and lignin-rich pulp. Holzforschung 63:232–239.Web of ScienceGoogle Scholar

  • Willför, S., Hemming, J., Reunanen, M., Holmbom, B. (2003) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57:359–372.Google Scholar

  • Xiao, B., Sun, X.F., Sun, R.C. (2001) Extraction and characterization of lipophilic extractives from rice straw. I. Chemical composition. J. Wood Chem. Technol. 21: 397–411.CrossrefGoogle Scholar

About the article

Received: 2018-09-20

Accepted: 2019-02-13

Published Online: 2019-03-15


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 31570542

Funding Source: Fundamental Research Funds for the Central Universities in China

Award identifier / Grant number: 2015ZCQ-CL-01

The financial support by the National Natural Science Foundation of China (grant no. 31570542) and the Fundamental Research Funds for the Central Universities in China (grant no. 2015ZCQ-CL-01) is gratefully acknowledged


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180216, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0216.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in