Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Effect of enzymatic hydrolysis lignin on the mechanical strength and hydrophobic properties of molded fiber materials

Yinling Zhao / Shengling Xiao / Jinquan Yue
  • College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dingyuan Zheng
  • College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liping Cai
  • Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-12-05 | DOI: https://doi.org/10.1515/hf-2018-0295

Abstract

In this study, poplar chemi-mechanical pulp was used as a raw material to investigate the effect of enzymatic hydrolysis lignin (EHL) content on the tensile strength and hydrophobicity of molded fiber materials (MFMs). The tensile strength and hydrophobic properties of the fabricated MFMs with different EHL contents were evaluated, and changes in their microstructure, chemical structure, and thermal stability were characterized via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis, respectively. Results show that under the experimental conditions used herein, the addition of EHL could increase the tensile strength and surface water contact angle of MFMs up to 20.3 MPa and 95.0°, respectively. The SEM observations indicate that the addition of EHL expanded the contact area between the EHL and fibers, thereby reducing the holes between fibers. The FTIR and TG analyses indicated that hot-pressing degraded EHL to form small molecular substances and improved the reaction with aldehydes produced via carbohydrate degradation, improving both the inter-fiber bonding strength and hydrophobicity of the MFM surface.

Keywords: enzymatic hydrolysis lignin; hydrophobic property; molded fiber material; tensile strength

References

  • Djikanović, D., Simonović, J., Savić, A., Ristić, I., Bajuk-Bogdanović, D., Kalauzi, A., Cakić, S., Budinski-Simendić, J., Jeremić, M., Radotić, K. (2012) Structural differences between lignin model polymers synthesized from various monomers. J. Polym. Environ. 20:607–617.CrossrefWeb of ScienceGoogle Scholar

  • Faix, O. (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28.CrossrefGoogle Scholar

  • Falco, C., Sieben, J.M., Brun, N., Sevilla, M., van der Mauelen, T., Morallón, E., Cazorla-Amorós, D., Titirici, M.M. (2013) Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6:374–382.Web of ScienceCrossrefPubMedGoogle Scholar

  • GB/T 1040.3-2006 (2006) “Plastics – Determination of tensile properties – Part 3: test conditions for films and sheets.” Standardization Administration of China, Beijing, China.Google Scholar

  • Huang, J., Fu, S.Y. Lignin Chemistry and Modified Materials. Chemical Industry Press, Beijing, 2014.Google Scholar

  • Jin, C.D., Yang, W., Han, S.J., Wang, Z., Li, J.P. (2014) The change law of lignin in the process of manufacturing non-colloidal fiber board – taking the manufacturing method of acidic steam heating and grinding as an example. J. Northeast For. Univ. 42:89–92.Google Scholar

  • Kaczmarek-Okrój, M., Bruczyńska, M., Wojciechowska, M., Klich, D., Głowacz, K., Gajewska, K., Olech, W. (2016) Rules of capture and transport of wisents from Poland to other European countries. J. Vinyl Addit. Technol. 22:231–238.Google Scholar

  • Li, J., Zheng, R.X., Jin, C.D. Study and Practice of Non – Adhesive Artificial Board. Science Press, Beijing, 2010.Google Scholar

  • Li, Y., Fu, Q., Rojas, R., Yan, M., Lawoko, M., Berglund, L. (2017) Lignin-retaining transparent wood. ChemSusChem 10:3445–3451.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Lin, Z., Peng, W.X., Li, N.C. (2013) Effect of alkali treatment on the extrusion binding mechanism of eucalyptus fiber. in China forestry congress. 16:64–68.Google Scholar

  • Liu, C.Y., Si, C.L., Wang, G.H., Jia, H.Y., Ma, L.T. (2018) A novel and efficient process for lignin fractionation in biomass-derived glycerol-ethanol solvent system. Ind. Crop. Prod. 111:201–211.CrossrefWeb of ScienceGoogle Scholar

  • Mao, H., Chen, X., Huang, R., Chen, M., Yang, R., Lan, P., Zhou, M., Zhang, F., Yang, Y., Zhou, X. (2018) Fast preparation of carbon spheres from enzymatic hydrolysis lignin: effects of hydrothermal carbonization conditions. Sci. Rep. 8:9501–9506.Web of SciencePubMedCrossrefGoogle Scholar

  • Ou, Y., Huang, Q. (2010) Study on the photo degradation of pulp mold container. J. Appl. Polym. Sci. 87:2052–2056.Google Scholar

  • Qin, Z., Gao, Q., Zhang, S., Li, J. (2014) Surface free energy and dynamic wettability of differently machined poplar woods. Bioresources 9:3088–3103.Google Scholar

  • Sadeghifar, H., Cui, C., Argyropoulos, D.S. (2012) Toward thermoplastic lignin polymers. Part 1. Selective Masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind. Eng. Chem. Res. 51:16713–16720.Web of ScienceCrossrefGoogle Scholar

  • Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36:23–40.CrossrefGoogle Scholar

  • Sevilla, M., Fuertes, A.B. (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon47:2281–2289.CrossrefWeb of ScienceGoogle Scholar

  • Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., Hajaligol, M.R. (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482.CrossrefGoogle Scholar

  • Suzuki, S., Shintani, H., Seungyoung, P., Saito, K., Laemsak, N., Okuma, M., Iiyama, K. (1998) Preparation of binderless boards from steam exploded pulps of oil palm (Elaeis guneensis Jaxq.) fronds and structural characteristics of lignin and wall polysaccharides in steam exploded pulps to be discussed for self-bindings. Holzforschung 52:417–426.CrossrefGoogle Scholar

  • Tan, X.S., Zhang, Q., Wang, W., Zhuang, X.S., Deng, Y.Z., Yuan, Z.H. (2019) Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation. Fuel 249:334–340.Web of ScienceCrossrefGoogle Scholar

  • Wang, B., Li, D.-L., Chen, T.-Y., Qin, Z.-Y., Peng, W.-X., Wen, J.-L. (2017a) Understanding the mechanism of self-bonding of bamboo binderless boards: investigating the structural changes of lignin macromolecule during the molding pressing process. Bioresources 12:514–532.Web of ScienceGoogle Scholar

  • Wang, Q., Xiao, S., Shi, S.Q., Cai, L. (2017b) Mechanical strength, thermal stability, and hydrophobicity of fiber materials after removal of residual lignin. Bioresources 13:71–85.Web of ScienceGoogle Scholar

  • Wang, Q.L., Xiao, S.L., Shi, S.Q., Cai, L.P. (2018) The effect of delignification on the properties of cellulosic fiber material. Holzforschung 72:443–449.Web of ScienceCrossrefGoogle Scholar

  • Wang, Q.L., Xiao, S.L., Shi, S.Q., Cai, L.P. (2019) Mechanical property enhancement of self-bonded natural fiber material via controlling cell wall plasticity and structure. Mater. Design. 172:8.Web of ScienceGoogle Scholar

  • Wu, F.S. Study on Molding Technology of Fine Industrial Packaging Pulp Moulding Products. South China University of Technology, Guangdong, 2016.Google Scholar

  • Xu, F., Sun, R.C., Zhai, M.Z., Sun, J.X., Jiang, J.X., Zhao, G.J. (2010) Comparative study of three lignin fractions isolated from mild ball-milled Tamarix austromogoliac and Caragana sepium. J. Appl. Polym. Sci. 108:1158–1168.Web of ScienceGoogle Scholar

  • Yang, W. Study on the Change of Main Components in the Forming Process of Poplar Anhydric Fibreboard. Zhejiang Forestry University, Hangzhou, 2012.Google Scholar

  • Yu, C., Zhang, W., Bekele, L.D., Lu, X.a., Duns, G.J., Jin, L., Jia, Q., Chen, J. (2018) Characterization of thermoplastic composites developed with wheat straw and enzymatic-hydrolysis lignin. Bioresources 13:3219–3235.Web of ScienceGoogle Scholar

  • Yuan, Y., Guo, M.H. (2014) Preparation and characterization of composite modified lignin/wood fiber composites. J. Compos. Mater. 31:1098–1105.Google Scholar

  • Yue, X., Zhang, Y.Y., Zheng, D.Y., Zhao, Y.L., Yue, J.Q., Xiao, S., L. (2018) Study on changes of lignin structure during hot pressing of moulded products. Packaging Engineering 39:84–90.Google Scholar

  • Zhang, Y., Wu, J.-Q., Li, H., Yuan, T.-Q., Wang, Y.-Y., Sun, R.-C. (2017) Heat treatment of industrial alkaline lignin and its potential application as an adhesive for green wood–lignin composites. ACS Sustain. Chem. Eng. 5:7269–7277.CrossrefWeb of ScienceGoogle Scholar

  • Zheng, X. Study on the Hot Pressing Process and Cementing Mechanism of Non-Wood Plant Gluing – Free Board. Central South University of Forestry and Technology, Changsha, 2012.Google Scholar

  • Zhou, J., Zhou, Y.H., Bo, C.Y., Li, P.Y., Liang, B.C. (2015) Advances in the extraction and application of enzymatic lignin. New Chemical Materials 4:245–246.Google Scholar

  • Yao, P.P. Research of preparation modeling molded packaging materials using wood residues. Northeast Forestry University, Harbin, 2015.Google Scholar

About the article

Received: 2018-12-13

Accepted: 2019-09-04

Published Online: 2019-12-05


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by the Fundamental Research Funds for Central Universities (no. 2572018AB24) and the National Key Research and Development Program of China (no. 2017YFD0601004).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20180295, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0295.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in