Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Ahead of print


Natural durability of subfossil oak: wood chemical composition changes through the ages

Jan Baar
  • Corresponding author
  • Department of Wood Science, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zuzana Paschová
  • Department of Wood Science, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamás Hofmann
  • Institute of Chemistry, University of Sopron, Bajcsy-Zsilinszky Street 4, H-9400 Sopron, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Kolář
  • Department of Wood Science, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerald Koch
  • Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 50, 38116 Braunschweig, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bodo Saake
  • Chemical Wood Technology, University of Hamburg, Haidkrugsweg 1, 22885 Barsbüttel-Willinghusen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Rademacher
  • Department of Wood Science, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-14 | DOI: https://doi.org/10.1515/hf-2018-0309


In recent years, subfossil oak has become increasingly popular, particularly in the manufacture of small wooden products. Due to the long period of its underground preservation, detailed knowledge of its properties is essential to properly use this material. In this study, subfossil oak samples dated to approximately 1000, 2000 and 3000 years BP and recent oak samples were chemically analyzed to determine the contents of extractives, the main wood components, and inorganic elements. The results were then evaluated in light of their natural durability. The mass loss of subfossil oak was 2–3 times lower than that of the recent sample, but the age of the subfossil oak itself had no influence on its durability. The long-term leaching process of water-soluble ellagitannins, together with their hydrolysis and bonding in ferric tannate complexes, were responsible for the decreased durability. The oldest subfossil oak had the lowest amount of phenolic compounds and the highest content of inorganic elements. Optical emission spectrometry proved an increase in inorganic elements 5–7 times higher than recent oak content, with the highest increase found for calcium and iron. Compared to recent oaks, subfossil oaks manifested decreased content of carbohydrates and correspondingly increased lignin content. Our results revealed that subfossil oak cannot be considered a suitable material for exterior use under aerobic conditions.

Keywords: ellagitannins; extractives; inorganic elements; subfossil oak; wood-rotting fungi


  • Aloui, F., Ayadi, N., Charrier, F., Charrier, B. (2004) Durability of European oak (Quercus petraea and Quercus robur) against white rot fungi (Coriolus versicolor): relations with phenol extractives. Holz. Roh. Werkst. 62:286–290.CrossrefGoogle Scholar

  • Ayadi, N., Charrier, B., Irmouli, M., Charpentier, J.P., Allemand, J.C., Feuillat, F., Keller, R. Interspecific Variability of European Oak Durability against White Rot Fungi (Coriolus versicolor): Comparison between Sessile Oak and Peduncle Oak (Quercus petraea and Quercus robur). IRG/WP/01-10393. The International Research Group on Wood Preservation, Stockholm, 2001.Google Scholar

  • Baar, J., Paschová, Z., Hofmann, T., Hapla, F. (2017) Effect of site conditions on extractives content in Sessile oak. In IUFRO Division 5 Conference 2017 and 60th SWST International Convention – Forest Sector Innovations for a Greener Future: Final Program, Proceedings and Abstracts. Madison: Society of Wood Science and Technology. Unpaged.Google Scholar

  • Baldrian, P. (2003) Interactions of heavy metals with white-rot fungi. Enzyme. Microb. Tech. 32:78–91.CrossrefGoogle Scholar

  • Bernát, I. (1983) The distribution of iron in nature. In: Iron Metabolism. Ed. Bernát, I. Springer, Boston. pp. 9–13.Google Scholar

  • Bhat, T.K., Singh, B., Sharma, O.P. (1998) Microbial degradation of tannins – a current perspective. Biodegradation 9:343–357.PubMedCrossrefGoogle Scholar

  • Bednar, H., Fengel, D. (1974) Physikalische, chemische und strukturelle Eigenschaften von regentem und subfossilem Eichenholz. Holz. Roh. Werkst. 32:99–107.CrossrefGoogle Scholar

  • Blanchette, R.A., Nilsson, T., Daniel, G., Abad, A. (1990) Biological degradation of wood. In: Archaeological Wood: Properties, Chemistry, and Preservation. Eds. Rowell, R.M., Barbour, R.J. American Chemical Society, Washington, DC. pp. 141–174.Google Scholar

  • Brischke, C., Welzbacher, C.R., Rolf-Kiel, H., Augusta, U., Brandt, K., Rapp, A.O. Dauerhaftigkeit von Eichenholz. Holzschutz-Tagung, Göttingen, 2010. pp. 116–136.Google Scholar

  • Brischke, C., Behnen, C.J., Lenz, M.-T., Brandt, K., Melcher, E. (2012) Durability of oak timber bridges – impact of inherent wood resistance and environmental conditions. Int. Biodeter. Biodegr. 75:115–123.CrossrefGoogle Scholar

  • Budavari, S., Heckelman, P.E., Kinneary, J.F., O’Neil, M.J., Smith, A. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Merck, Whitehouse Station, 1996.Google Scholar

  • Čufar, K., Gričar, J., Zupančič, M., Koch, G., Schmitt, U. (2008) Anatomy, cell-wall structure and topochemistry of waterlogged archaeological wood aged 5,200 and 4,500 years. IAWA J. 29:55–68.CrossrefGoogle Scholar

  • Charrier, B., Haluk, J.P., Metche, M. (1995) Characterisation of European oak wood constituents acting in the brown discolouration during kiln-drying. Holzforschung 49:168–172.CrossrefGoogle Scholar

  • Dedic, D., Sandberg, T., Iversen, T., Larsson, T., Ek, M. (2014) Analysis of lignin and extractives in the oak wood of the 17th century warship Vasa. Holzforschung 68:419–425.Google Scholar

  • Doussot, F., de Jéso, B., Quideau, S., Pardon, P. (2002) Extractives content in cooperage oak wood during natural seasoning and toasting; influence of tree species, geographic location, and single-tree effects. J. Agric. Food. Chem. 50:5955–5961.PubMedCrossrefGoogle Scholar

  • Esteban, L.G., de Palacios, P., García Fernández, F., García-Amorena, I. (2010) Effects of burial of Quercus spp. wood aged 5910±250 BP on sorption and thermodynamic properties. Int. Biodeter. Biodegr. 64:371–377.CrossrefGoogle Scholar

  • Fengel, D., Wegener, G. Wood – Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin, 1989.Google Scholar

  • Fergus, B., Goring, D.A.I. (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117.CrossrefGoogle Scholar

  • Feuillat, F., Dupouey, J.-L., Sciama, D., Keller, R. (1997) A new attempt at discrimination between Quercus petraea and Quercus robur based on wood anatomy. Can. J. For. Res. 27:343–351.CrossrefGoogle Scholar

  • Florian, M.L.E. (1990) Scope and history of archaeological wood. In: Archaeological Wood: Properties, Chemistry and Preservation. Eds. Rowell, R.M., Barbour, R.J. American Chemical Society, Washington, pp. 3–32.Google Scholar

  • Fojutowski, A., Wróblewska, H., Komorowicz, M., Kropacz, A., Noskowiak, A., Pomian, I. (2014) Changes in the properties of English oak wood (Quercus robur L.) as a result of remaining submerged in Baltic Sea waters for two years. Int. Biodeter. Biodegr. 86:122–128.CrossrefGoogle Scholar

  • Guilley, E., Charpentier, J.P., Ayadi, N., Snakkers, G., Nepveu, G., Charrier, B. (2004) Decay resistance against Coriolus versicolor in Sessile oak (Quercus petraea Liebl.): analysis of the between-tree variability and correlations with extractives, tree growth and other basic wood properties. Wood Sci. Technol. 38:539–554.CrossrefGoogle Scholar

  • Hart, J.H., Hillis, W.E. (1972) Inhibition of wood-rotting fungi by ellagitannins in the heartwood of Quercus alba. Phytopathology 62:620–626.CrossrefGoogle Scholar

  • Haslam, E. (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod. 59:205–215.CrossrefPubMedGoogle Scholar

  • Hedges, J.I. (1990) The Chemistry of Archaeological Wood. In: Archaeological Wood: Properties, Chemistry and Preservation. Eds. Rowell, R.M., Barbour, R.J. American Chemical Society, Washington. pp. 111–140.Google Scholar

  • Herve Du Penhoat, C., Michon, V., Peng, S., Viriot, C., Scalbert, A., Gage, D. (1991) Structural elucidation of new dimeric ellagitannins from Quercus robur L. Roburins A-E. Chem. Soc. Perkin. Trans. 1:1653–1660.Google Scholar

  • Horský, D., Reinprecht, L. (1986) Štúdia subfosilneho duboveho dreva. VPA 1986/1, VŠLD Zvolen, Zvolen.Google Scholar

  • Jellison, J., Connolly, J., Goodell, B., Doyle, B., Illman, B., Fekete, F., Ostrofsky, A. (1997) The role of cations in the biodegradation of wood by the brown-rot fungi. Int. Biodeter. Biodegr. 39:165–179.CrossrefGoogle Scholar

  • Karami, L., Fromm, J., Koch, G., Schmidt, O., Schmitt, U. (2014) Oak wood inhabiting fungi and their effect on lignin studied by UV microspectrophotometry. Maderas-Cienc. Tecnol. 16:149–158.Google Scholar

  • Kleist, G., Schmitt, U. (1999) Evidence of accessory components in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz. Roh. Werkst. 57:93–95.CrossrefGoogle Scholar

  • Klumpers, J., Scalbert, A., Janin, G. (1994) Ellagitannins in European oak wood – polymerization during wood ageing. Phytochemistry 36:1249–1252.CrossrefGoogle Scholar

  • Koch, G., Kleist, G. (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567.Google Scholar

  • Koch, G., Melcher, E., Lenz, M.T., Bauch, J. (2018) Biological and topochemical studies on the resistance of excavated oak piles (Quercus sp.) from a historical bridge in Bavaria. Holzforschung 72:133–141.CrossrefGoogle Scholar

  • Kolář, T., Rybníček, M. (2011) Dendrochronological and radiocarbon dating of subfossil wood from the Morava River basin. Geochronometria 38:155–161.CrossrefGoogle Scholar

  • Kolář, T., Gryc, V., Rybníček, M., Vavrčík, H. (2012) Anatomical analysis and species identification of subfossil oak wood. Wood Res. 57:251–264.Google Scholar

  • Kolář, T., Rybníček, M, Střelcová, M., Hedbávný, J, Vít, J. (2014) The changes in chemical composition and properties of subfossil oak deposited in holocene sediments. Wood Res. 59:146–166.Google Scholar

  • Kollmann, F., Fengel, D. (1965) Änderung der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz. Roh. Werkst. 23:461–468.CrossrefGoogle Scholar

  • Krisper, P., Tisler, V., Skubic, V., Rupnik, I., Kobal, S. (1992) The use of tannin from chestnut (Castanea vesca). In: Plant Polyphenols. Eds. Hemingway, R.W., Laks, P.E. Plenum Press, New York. pp. 1013–1020.Google Scholar

  • Krutul, D., Kocoń, J. (1982) Inorganic constituents and scanning electron microscopic study of fossil oak wood (Quercus sp.). Holzforsch. Holzverw. 34:69–77.Google Scholar

  • Krutul, D., Radomski, A., Zawadzki, J., Zielenkiewicz, T., Antczak, A. (2010) Comparison of the chemical composition of the fossil and recent oak wood. Wood Res. 55:113–120.Google Scholar

  • Lei, Z. Monomeric Ellagitannins in Oaks and Sweetgum, PhD thesis. Virginia Polytechnic Institute and State University, Virginia, 2002. p. 145.Google Scholar

  • Lewis, R.J. Hawley’s Condensed Chemical Dictionary. Van Nostrand Reinhold Co., New York, 1993.Google Scholar

  • Lyr, H. (1962) Detoxification of heartwood toxins and chlorophenols by higher fungi. Nature 4836:289–290.Google Scholar

  • Maas, J.L., Galletta, G.J., Stoner, G.D. (1991) Ellagic acid, an anticarcinogen in fruits, especially in strawberries. A review. Hort. Sci. 26:10–14.CrossrefGoogle Scholar

  • Mańkowski, P., Kozakiewicz, P., Zielenkiewicz, T. (2013) Investigations of iron content in fossil oak from a medieval settlement in Płońsk. Ann WULS – SGGW Forest. Wood Technol. 83:201–205.Google Scholar

  • Masson, G., Moutounet, M., Puech, J.L. (1995) Ellagitannin content of oak wood as a function of species and of sampling position in the tree. Am. J. Enol. Viticult. 46:262–268.Google Scholar

  • Meyer, L., Brischke, C., Melcher, E., Brandt, K., Lenz, M.T., Soetbeer, A. (2014) Durability of English oak (Quercus robur L.) – comparison of decay progress and resistance under various laboratory and field conditions. Int. Biodeter. Biodegr. 86:79–85.CrossrefGoogle Scholar

  • Mila, I., Scalbert, A., Expert, D. (1996) Iron withholding by plant polyphenols and resistance to pathogens and rots. Phytochemistry 42:1551–1555.CrossrefGoogle Scholar

  • Mosedale, J.R., Charrier, B., Janin, G. (1996) Genetic control of wood colour, density and heartwood ellagitannin concentration in European oak (Quercus petraea and Q. robur). Forestry 69:111–124.CrossrefGoogle Scholar

  • Mosedale, J., Feuillat, F., Baumes, R., Dupouey, J.L., Puech, J.L. (1998) Variability of wood extractives among Quercus robur and Quercus petraea trees from mixed stands and their relation to wood anatomy and leaf morphology. Can. J. Forest. Res. 28:1–13.Google Scholar

  • Musha, Y., Goring, D.A.I. (1975) Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood. Sci. Technol. 9:45–58.CrossrefGoogle Scholar

  • Passialis, C.N. (1997) Physico-chemical characteristics of waterlogged archaeological wood. Holzforschung 51:111–113.CrossrefGoogle Scholar

  • Prida, A., Boulet, J.C., Ducousso, A. (2006) Effect of species and ecological conditions on ellagitannin content in oak wood from an even-aged and mixed stand of Quercus robur L. and Quercus petraea Liebl. Ann. For. Sci. 63:415–524.CrossrefGoogle Scholar

  • Peng, S., Scalbert, A., Monties, B. (1991) Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry 30:375–378.Google Scholar

  • Scalbert, A. (1992) Tannins in woods and their contribution to microbial decay prevention. In: Plant Polyphenols. Eds. Hemingway, R.W., Laks, P.E. Plenum Press, New York. pp. 935–952.Google Scholar

  • Scalbert, A., Monties, B., Favre, J.M. (1988) Polyphenols of Quercus robur: adult tree and in vitro grown calli and shoots. Phytochemistry 27:3483–3488.CrossrefGoogle Scholar

  • Seikel, M.K., Hostettler, E.D., Niemann, G.J. (1971) Phenolics of Quercus robur wood. Phytochemistry 10:2249–2251.CrossrefGoogle Scholar

  • Solár, R., Reinprecht, L., Kačík, F., Melcer, I., Horský, D. (1987) Comparison of some physico-chemical and chemical properties of polysacharidic and lignin part of contemporary and subfossil oak wood. Cell. Chem. Technol. 2:513–524.Google Scholar

  • Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31–43.PubMedCrossrefGoogle Scholar

  • Swain, T., Bate-Smith, E.C. (1962) Flavanoid compounds. In: Comparative Biochemistry. Eds. Florkin, M., Mason, H.S. Academic Press, New York. pp. 755–809.Google Scholar

  • Szczepkowski, A. (2010) Odporność drewna dębu szypułkowego (Quercus robur L.), z drzew o różnym stanie zdrowotnym, na rozkład powodowany przez grzyby. Leśne prace badawcze 71:125–133.Google Scholar

  • Thaler, N., Humar, M. (2013) Changes of fungicidal, mechanical and sorption properties of wood during above ground outdoor exposure. Proceedings IRG Annual Meeting. IRG/WP: 13-20513.Google Scholar

  • Viriot, C., Scalbert, A., Hervé du Penhoat, C.L.M., Moutounet, M. (1994) Ellagitannins in woods of sessile oak and sweet chestnut dimerization and hydrolysis during wood ageing. Phytochemistry 36:1253–1260.CrossrefGoogle Scholar

  • Vít, J., Kolář, T., Rybníček, M. (2009) Předběžné výsledky studia vztahu subfosilních kmenů a fluviálních sedimentů na lokalitách Osek nad Bečvou a Tovačov-Annín (Preliminary results of the relationship between subfossil trunks and fluvial sediments in the areas of Osek nad Bečvou and Tovačov-Annín). Geologické výzkumy na Moravě a ve Slezsku 1:53–55.Google Scholar

  • Vivas, N., Glories, Y., Bourgeois, G., Vitry, C. (1996) The heartwood ellagitannins of different oak (Quercus sp.) and chestnut species (Castanea sativa Mill.). Quantity analysis of red wines aging in barrels. Journal des Sciences et Techniques de la Tonnelerie 2:25–75.Google Scholar

  • Wagenführ, R. Holzatlas. Fachbuchverlag Leipzig im Carl Hanser Verlag, München, 2000.Google Scholar

  • Wakeling, R., Morris, P. (2014) Wood deterioration: ground contact hazards. In: Deterioration and Protection of Sustainable Biomaterials. Eds. Schultz, T., Goodell, B., Nicholas, D.D. American Chemical Society, Washington. pp. 131–146.Google Scholar

  • Welling, J., Schwarz, T., Bauch, J. (2018) Biological, chemical and technological characteristics of waterlogged archaeological piles (Quercus petraea (Matt.) Liebl.) of a medieval bridge foundation in Bavaria. Eur. J. Wood Wood Prod. 76:1173–1186.CrossrefGoogle Scholar

  • Williams, A.H. (1963) Enzyme inhibition by phenolic compounds. In: Enzyme Chemistry of Phenolic Compounds. Ed. Pridham, J.B. Pergamon Press, New York.Google Scholar

  • Williams, D.J., Edwards, D., Chaliha, M., Sultanbawa, Y. (2016) Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra. Chem. Pap. 70:1078–1086.Google Scholar

  • Zhang, B., Cai, J., Duan, C.Q., Reeves, M.J., He, F. (2015) A review of polyphenolics in oak woods. Int. J. Mol. Sci. 16:6978–7014.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-12-31

Accepted: 2019-06-27

Published Online: 2019-08-14

Funding Source: European Social Fund

Award identifier / Grant number: CZ.1.07/2.3.00/20.0269

Funding Source: Czech Science Foundation

Award identifier / Grant number: GA18-11004S

Funding Source: Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPUI)

Award identifier / Grant number: LO1415

The paper was supported by the European Social Fund and the state budget of the Czech Republic, project “The Establishment of an International Research Team for the Development of New Wood-based Materials”, reg. no. CZ.1.07/2.3.00/20.0269 (funder Id: http://dx.doi.org/10.13039/501100004895) and the Czech Science Foundation project no. GA18-11004S (funder Id: http://dx.doi.org/10.13039/501100001824), Extension of the Czech Millennia-long Oak Tree-ring Width Chronology; and the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPUI), grant no. LO1415 (funder Id: http://dx.doi.org/10.13039/501100001823).

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20180309, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2018-0309.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in