Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Xylan accessibility of bleached eucalypt pulp in alkaline solutions

Teresa M.P. Gomes / António P. Mendes de Sousa
  • Research Institute on Forestry and Paper (RAIZ), Quinta de S. Francisco, Eixo 3801-501, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yuri I. Belenkiy
  • St. Petersburg Forest Technical University, Institutsky per. 5, 194021 St. Petersburg, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitry V. Evtuguin
Published Online: 2019-06-21 | DOI: https://doi.org/10.1515/hf-2019-0023

Abstract

The accessibility of glucuronoxylan from a refined, bleached Eucalyptus globulus industrial kraft pulp in 0–18% aqueous NaOH solution at room temperature (25°C) was studied. The extraction profile revealed a maximum extraction of xylan in the pulp at about 10–12% NaOH concentration and was explained by the maximum swelling of the pulp according to the Gibbs-Donnan equilibrium. The kinetics of xylan removal and the monitoring of its structural features were performed at 5 and 10% NaOH concentrations. The maximum yields of xylans with 10% and 5% NaOH were as high as 90% and 60% for 2 h extraction, respectively. The structural features of xylan were assessed by acid methanolysis and one-dimensional (1D)/two-dimensional (2D) nuclear magnetic resonance (NMR), and the molecular weight by size exclusion chromatography (SEC). The xylan extracted with 10% NaOH had a slightly higher molecular weight and a lower branching with uronic moieties than the xylan extracted with 5% NaOH. The former was less pure (contained more β-cellulose) than the latter. Structural studies by NMR resulted in the conclusion that there are at least two types of xylans removed from the pulp: one xylan with relatively high 4-O-methyl-α-D-glucuronosyl [MeGlcA-(1→] and [→2)-MeGlcA-(1→] substituents and another xylan with a much lower substitution with uronic residues.

Keywords: Eucalyptus globulus; fibril aggregation; kraft pulping; refinability; xylan

References

  • Arnoul-Jarriault, B., Lachenal, D., Chirat, C., Heux, L. (2014) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind. Crops Prod. 65:565–571.Web of ScienceGoogle Scholar

  • Awano, T., Tanabe, K., Fujita, M. (2001) Xylan and lignin deposition on the secondary wall of Fagus crenata fibers. In: Molecular Breeding of Woody Plants. Eds. Morohoshi, N., Komamine, A. Elsevier Science B.V., Amsterdam, pp. 137–142.Google Scholar

  • Bosmans, T.J., Agnes, M., Stépán, A.M., Toriz, G., Renneckar, S., Karabulut, E., Wågberg, L., Paul Gatenholm, P. (2014) Assembly of debranched Xylan from solution and on nanocellulosic surfaces. Biomacromolecules 15:924–930.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Browning, B.L. Methods of Wood Chemistry, Vol. 2. Intersci. Publ., New York, 1967.Google Scholar

  • Budtova, T., Navard, P. (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55.CrossrefWeb of ScienceGoogle Scholar

  • Clark, J.d’A. Pulp Technology and Treatment for Paper. 2nd Edition. Miller Freeman Publ. Inc., San Francisco, 1985.Google Scholar

  • Deutschmann, R., Dekker, R. (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol. Adv. 30:1627–1640.Web of SciencePubMedCrossrefGoogle Scholar

  • Dahlman, O., Jacobs, A., Sjoberg, J. (2003) Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps. Cellulose 10:325–334.CrossrefGoogle Scholar

  • Ebringerová, A. (2006) Structural diversity and application potential of hemicelluloses. Macromol. Symp. 232:1–12.Google Scholar

  • Evtuguin, D., Tomás, J., Silva, A., Pascoal Neto, C. (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr. Res. 338:597–604.PubMedCrossrefGoogle Scholar

  • Ferreira, A.R.F.C., Figueiredo, A.B., Evtuguin, D.V., Saraiva, J.A. (2011) High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose. Green Chem. 13:2764–2767.CrossrefWeb of ScienceGoogle Scholar

  • Genco, J.M., Busayasakul, N., Medhora, H.K., Robbins, W. (1990) Hemicellulose retention during kraft pulping. TAPPI J. 73:223–233.Google Scholar

  • Gonçalves, V., Evtuguin, D.V., Domingues, M.R. (2008) Structural characterization of acetylated heteroxylan from the natural hybrid Paulownia elongate/Paulownia fortunei. Carbohydr. Res. 343:256–266.CrossrefGoogle Scholar

  • Gorshkova, T.A., Gurjanov, O.P., Mikshina, P.V., Ibragimova, N.N., Mokshina, N.E., Salnikov, V.V., Ageeva, M.V., Amenitskii, S.I., Chernova, T.E., Chemikosova, S.B. (2010) Specific type of secondary wall formed by plant fibers. Russ. J. Plant Physiol. 57:328–341.Web of ScienceCrossrefGoogle Scholar

  • GOST 7516-85 (1985) Pulp. Method for determination of swelling.Google Scholar

  • Hansson, J. (1970) Sorption of hemicelluloses on cellulose fibres. Part 3. The temperature dependence on sorption of birch xylan and pine glucomannan at kraft pulping conditions. Svensk Papperstidn. 73:49–53.Google Scholar

  • He, L., Guan, Q.Q., Peng, L.C., Chen, K.L., Chai, X.S. (2017) Improvement of alkali efficiency for purification of dissolving pulp by a modified cold caustic extraction process. Carbohydr. Polym. 178:412–417.Web of ScienceCrossrefPubMedGoogle Scholar

  • Hubbe, M.A. (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763.Google Scholar

  • Jacobs, A., Larsson, P.T., Dahlman, O. (2001) Distribution of uronic acids in xylans from various species of soft- and hardwood as determined by MALDI mass spectrometry. Biomacromolecules 2:979–990.PubMedCrossrefGoogle Scholar

  • Kim, J.S., Sandquist, D., Sundberg, B., Daniel, G. (2012) Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta 235:1315–1330.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kerr, A.J., Goring, D.A.I. (1975) The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol. 9:563–573.Google Scholar

  • Krässig, H.A. Cellulose – Structure, Accessibility and Reactivity. Ed. Huglin, M.B. Polymer Monographs, 11th ed. Gordon and Breach Science Publishers, Amsterdam, 1993.Google Scholar

  • Laine, C., Kemppainen, K., Kuutti, L., Varhimo, A., Asikainen, S., Grönroos, A., Määttänen, M., Buchert, J., Harlin, A. (2015) Extraction of xylan from wood pulp and brewer’s spent grain. Ind. Crops Prod. 70:231–237.CrossrefWeb of ScienceGoogle Scholar

  • Lekha, P., Bush, T., Pammenter, N., Sitholè, B., Berjak, P. (2018) Quantitative assessment of xylan distribution across the secondary cell wall layers of Eucalyptus dissolving pulp fibres. Holzforschung 72:1–8.Web of ScienceGoogle Scholar

  • Li, J., Liu, Y., Duan, C., Zhang, H., Ni, Y. (2015) Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Bioresour. Technol. 192:501–506.CrossrefWeb of SciencePubMedGoogle Scholar

  • Linder, A., Bergman, R., Bodin, A., Gatenholm, P. (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19:5072–5077.CrossrefGoogle Scholar

  • Lisboa, S.A., Evtuguin, D.V., Pascoal Neto, C., Goodfellow, B.J. (2005) Isolation and structural characterization of polysaccharides dissolved in Eucalyptus globulus kraft black liquors. Carbohydr. Polym. 60:77–85.CrossrefGoogle Scholar

  • Lisboa, S.A., Evtuguin, D.V., Pascoal Neto, C. (2009) Study on the xylan precipitation in E. globulus pulp during kraft pulping. Proceedings of International Symposium on Wood, Fiber and Pulping Chemistry, June 15–18, Oslo, Norway, O-027.Google Scholar

  • Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426–428.CrossrefGoogle Scholar

  • Nikitin, N.I. Chemistry of Wood and Cellulose. Acad. Sci. USSR, Moscow, 1962, pp. 185–272.Google Scholar

  • Pääkkönen, T., Dimic-Misic, K., Orelma, H., Pönni, R., Vuorinen, T., Maloney, T. (2016) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-medicated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23:277–293.CrossrefGoogle Scholar

  • Pinto, P.C., Evtuguin, D.V., Pascoal Neto, C. (2005a) Structure of hardwood glucuronoxylans: modifications and impact on pulp retention during wood kraft pulping. Carbohydr. Polym. 60:489–497.CrossrefGoogle Scholar

  • Pinto, P.C., Evtuguin, D.V., Pascoal Neto, C. (2005b) Effect of structural features of wood biopolymers on hardwood pulping and bleaching performance. Ind. Eng. Chem. Res. 44:9777–9784CrossrefGoogle Scholar

  • Prozil, S.O., Evtuguin, D.V., Cruz Lopes, L.P. (2012) Structural characterization of polysaccharides isolated from grape stalks of Vitis vinifera L. Carbohydr. Res. 356:252–259.CrossrefWeb of SciencePubMedGoogle Scholar

  • Quaresma, A.C., Dias, V.M., Magina, S.P., Evtuguin, D.V. (2015) Modification of xylan from E. globulus kraft pulp for packaging applications. Proceedings of 18th International Symposium of Woo, Fiber and pulping Chemistry, September 9–11, Vienna, Austria, vol. 1, 298–302.Google Scholar

  • Richter, G.A., Glidden, K.E. (1940) Cellulose sheet swelling. Effect of temperature and concentration of sodium hydroxide solution. Ind. Eng. Chem. 32:480–486.CrossrefGoogle Scholar

  • Salgueiro, A.M., Evtuguin, D.V., Saraiva, J.A., Almeida, F. (2016) High pressure-promoted xylanase treatment to enhance papermaking properties of recycled pulp. Appl. Microbiol. Biotechnol. 100:9885–9893.Web of ScienceCrossrefPubMedGoogle Scholar

  • Saukkonen, E., Lyytikäinen, K., Backfolk, K. (2012) Alkaline xylan extraction of bleached kraft pulp – effect of extraction time on pulp chemical composition and physical properties. TAPPI J. 11:37–43.Google Scholar

  • Scott, R.W. (1984) Hemicellulose distribution in pulp fibers and alkaline extraction rates. J. Wood Chem. Technol. 4:199–218.CrossrefGoogle Scholar

  • Sixta, H. Pulp purification. In: Handbook of Pulp, Vol. 2. Wiley-VCH Verlag GmbH, Weinheim, 2006, pp. 933–965.Google Scholar

  • Sjöberg, J., Potthast, A., Rosenau, T., Kosma, P., Sixta, H. (2005) Cross-sectional analysis of the polysaccharide composition in cellulosic fiber materials by enzymatic peeling/high-performance capillary zone electrophoresis. Biomacromolecules 6:3146–3151.PubMedCrossrefGoogle Scholar

  • Sjöström, E. Pulping chemistry. In: Wood chemistry. Fundamentals and Applications, 2nd Ed. Academic Press Inc, London, UK, 1993, pp. 104–145.Google Scholar

  • Sousa, C.T., Amaral, J.L. (2017) Hardwood kraft pulp structural features affecting refinability. Holzforschung 71:619–624.Web of ScienceGoogle Scholar

  • Vuorinen, T., Alén, R. (1999) Carbohydrates. In: Analytical methods in wood chemistry, pulping and papermaking. Eds. Sjostrom, E., Alén, R. Springer-Verlag, Berlin, pp. 37–76.Google Scholar

  • Wedin, H., Sevastyanova, O., Evtuguin, D.V., Ragnar, M., Lindström, M.E. (2013) Impact of extended-impregnation cooking on the xylan structure in Eucalyptus urograndis kraft pulps. Nordic Pulp Pap. Res. J. 28:498–505.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2019-01-29

Accepted: 2019-04-25

Published Online: 2019-06-21


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was financially supported by the CICECO-Aveiro Institute of Materials, within the scope of the project POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and co-financed by FEDER under the PT2020 Partnership Agreement and by ERDF Funds through the Operational Competitiveness Program – COMPETE, in the frame of the project “NMC – New cellulosic materials” – FCOMP-01-0202-FEDER-034169.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190023, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0023.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in