Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Cellulose triacetate from different sources: modification assessment through thermal and chemical characterization

Lucca C. MalucelliORCID iD: https://orcid.org/0000-0003-4161-540X / Diego Lomonaco
  • Department of Organic and Inorganic Chemistry, Universidade Federal do Ceará, Building 940, Campus of Pici, 60455-970 Fortaleza, CE, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco A.S.C. Filho
  • Universidade Positivo (UP), Pedro Viriato Parigot de Souza, 5300, Curitiba PR 81280-330, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Washington L.E. Magalhães
Published Online: 2019-11-08 | DOI: https://doi.org/10.1515/hf-2019-0035

Abstract

Modification techniques have been widely employed to improve cellulose properties, thus increasing the diversity of industrial applications. While wood pulp cellulose is the most common source for industrial production, little has been studied about the effects of the cellulose source and its purity on modification. Therefore, this article investigates the influence of cellulose source (e.g. wood or cotton) on its modification (acetylation), by estimating the obtained degree of substitution (DS) through Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and back titration. The intense reduction in samples’ crystallinity after acetylation was a result of breakage of inter- and intra-molecular hydrogen bonds, thus confirming acetylation. Although Avicel showed the highest cellulose content and was virtually free of hemicellulose and lignin, this did not affect the acetylation degree, as all samples were successfully triacetylated. The techniques used in this study were ideal for detecting acetylation and estimating the DS, which makes them good tools for modification studies of cellulose derivatives.

Keywords: acetylation; cellulose acetate; cellulose derivatives; esterification

References

  • ASTM Methods, D1439-61T (1961) Tentative Methods of Testing Sodium Carboxymethylcellulose. ASTM International, West Conshohocken, PA, USA.Google Scholar

  • Basta, A.H., El-Saied, H., El-Deftar, M.M., El-Henawy, A.A., El-Sheikh, H.H., Abdel-Shakour, E.H., Hasanin, M.S. (2016) Properties of modified carboxymethyl cellulose and its use as bioactive compound. Carbohydr. Polym. 153:641–651.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Barud, H.S., Araújo Junior, A.M., Santos, D.B., Assunção, R.M.N., Meireles, C.S., Cerqueira, D.A., Rodrigues Filho, G., Ribeiro, C.A., Messaddeq, Y., Ribeiro, S.J.L. (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochimica Acta 471:61–69.CrossrefWeb of ScienceGoogle Scholar

  • Candido, R.G., Gonçalves, A.R. (2016) Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr. Polym. 152:679–686.CrossrefWeb of SciencePubMedGoogle Scholar

  • Candido, R.G., Godoy, G.G., Gonçalves, A.R. (2017) Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr. Polym. 167:280–289.CrossrefWeb of SciencePubMedGoogle Scholar

  • Cerqueira, D.A., Rodrigues Filho, G., Carvalho, R.D.A., Valente, A.J. (2010). Caracterização de acetato de celulose obtido a partir do bagaço de cana-de-açúcar por 1H-RMN. Polímeros: Ciência e Tecnologia. 20:85–91.CrossrefGoogle Scholar

  • El Nemr, A., Ragab, S., El Sikaily, A., Khaled, A. (2015) Synthesis of cellulose triacetate from cotton cellulose by using NIS as a catalyst under mild reaction conditions. Carbohydr. Polym. 130:41–48.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Goodlett, V.W., Doughert, J.-T., Patton, H.W. (1971) Characterization of cellulose acetates by nuclear magnetic resonance. J. Polym. Sci. 9:155–161.CrossrefGoogle Scholar

  • Haddada, R., Ferjani, E., Roudesli, M.S., Deratani, A. (2004) Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination. Desalination 167:403–409.Google Scholar

  • Heinze, T., El Seoud, O.A., Koschella, A. eds. (2018) Principles of cellulose derivatization. In: Cellulose Derivatives. Springer, Cham. pp. 259–292.Google Scholar

  • Hindi, S.S.Z., Abohassan, R.A. (2015) Cellulose triacetate synthesis from cellulosic wastes by heterogeneous reactions. BioResources, 10:5030–5048.Google Scholar

  • Hu, W., Chen, S., Xu, Q., Wang, H. (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohyd. Polym. 83:1575–1581.CrossrefWeb of ScienceGoogle Scholar

  • Jogunola, O., Eta, V., Hedenström, M., Sundman, O., Salmi, T., Mikkola, J.P. (2016) Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohydr. Polym. 135:341–348.Web of ScienceCrossrefPubMedGoogle Scholar

  • Malucelli, L.C., Matos, M., Jordão, C., Lomonaco, D., Lacerda, L.G., Carvalho Filho, M.A.S., Magalhães, W.L.E. (2019) Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper. Cellulose 26:1–15.Web of ScienceGoogle Scholar

  • Matsumura, H., Sugiyama, J., Glasser, W.G. (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J. Appl. Polym. Sci. 78:2242–2253.CrossrefGoogle Scholar

  • Olaru, N., Olaru, L., Vasile, C., Ander, P. (2011) Surface modified cellulose obtained by acetylation without solvents of bleached and unbleached kraft pulps. Polimery 56:834–840.CrossrefWeb of ScienceGoogle Scholar

  • Poletto, M., Pistor, V., Zeni, M., Zattera, A.J. (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym. Degrad. Stab. 96:679–685, ISSN 0141-3910.CrossrefGoogle Scholar

  • Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H. (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81:83–92.Web of ScienceCrossrefGoogle Scholar

  • Segal, L.G.J.M.A., Creely, J.J., Martin Jr, A.E., Conrad, C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29:786–794.CrossrefGoogle Scholar

  • Silva, V.L. (2014) Aproveitamento sustentável do bagaço de cana de açúcar para obtenção do acetato de celulose. Dissertação de Mestrado. Universidade Federal do Rio Grande do Norte.Google Scholar

  • Tang, S., Baker, G.A., Ravula, S., Jones, J.E., Zhao, H. (2012) PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chem. 14:2922–2932.Web of ScienceCrossrefGoogle Scholar

  • Togrul, H., Nurhan, A. (2003) Production of carboxymethyl cellulose from sugarbeet pulp cellulose and rheological behavior of carboxymethyl cellulose. Carbohydr. Polym. 54:73–82.CrossrefGoogle Scholar

  • Wang, F.J., Yang, Y.Y., Zhang, X.Z., Zhu, X., Chung, T.S., Moochhala, S. (2002) Cellulose acetate membranes for transdermal delivery of scopolamine base. Mater. Sci. Eng. C 20:93–100.CrossrefGoogle Scholar

  • Wang, H., Zhang, X., Jiang, Z., Li, W., Yu, Y. (2015) A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Ind. Crops Prod. 71:80–88.CrossrefWeb of ScienceGoogle Scholar

  • Wüstenberg, T. Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications. John Wiley & Sons, Weinheim, Germany, 2014.Google Scholar

  • Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.CrossrefWeb of ScienceGoogle Scholar

  • Zhou, X., Lin, X., White, K.L., Lin, S., Wu, H., Cao, S., Huang, L., Chen, L. (2016) Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 23:811–821.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2019-02-12

Accepted: 2019-08-23

Published Online: 2019-11-08


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Conflict of interest: The authors declare they have no conflict of interest.


Citation Information: Holzforschung, 20190035, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0035.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in