Aicher, S., Höfflin, L., Behrens, W. (2002) Determination of local and global modulus of elasticity in wooden boards. Otto-Graf-J. 13:183–198. Google Scholar

Blaß, H.J., Frese, M., Glos, P., Linsenmann, P., Denzler, J. Biegefestigkeit von Brettschichtholz aus Buche. Tech. Rep. Karlsruher Berichte zum Ingenieurholzbau; Band 1. Universitätsverlag Karlsruhe, Karlsruhe, Germany, 2005. Google Scholar

Boughton, G. (1994) Superior sorting of timber using localised stiffness on edge. In: Proceeding of the Pacific Timber Engeering Conference. Gold Coast, Australia, pp. 11–15. Google Scholar

Colling, F. (1990) Biegefestigkeit von Brettschichtholzträgern in Abhängigkeit von den festigkeitsrelevanten Einflußgrößen. [Bending strength of glulam beams. Effect of beam size and load configuration]. Eur J. Wood Wood Prod. 48:321–326. CrossrefGoogle Scholar

Colling, F., Scherberger, M. (1987) Die Streuung des Elastizitätsmoduls in Brettlängsrichtung. [Variation of MOE in longitudinal direction of boards]. Holz Roh- und Werkstoff 45:95–99. CrossrefGoogle Scholar

Corder, S. E. (1965) Localized deflection related to bending strength of lumber. In: 2nd Symposium on Nondestructive Testing of Wood. Ed. Galligan W.L. Washington State University, National Science Foundation, USA. Google Scholar

DIN 4074-5. (2008) Strength grading of wood – Part 5: sawn hard wood. German Institute for Standardization, Berlin, Germany. Google Scholar

Ehlbeck, J., Colling, F., Gorlacher, R. (1985) Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. [Influence of fingerjointed lamellae on the bending strength of glulam beams – development of a computer model]. Holz Roh- und Werkstoff 43:333–337. CrossrefGoogle Scholar

Ehlbeck, J., Colling, F. Biegefestigkeit von Brettschichtholz in Abhängigkeit von Rohdichte, Elsatizitätsmodul, Ästigkeit und Keilzinkung der Lamellen, der Lage der Keilzinkung sowie von der Trägerhöhe. Tech. Rep., Versuchsanstalt für Stahl, Holz und Steine, Universität Fridericiana Karlsruhe, Germany, 1987. Google Scholar

Ehlbeck, J., Colling, F., Görlacher, R. Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern. Tech. Rep. Versuchsanstalt für Stahl, Holz und Steine, Universität Fridericiana Karlsruhe, Germany, 1984. Google Scholar

EN 14081-1 (2016) Timber structures – strength graded structural timber with rectangular cross section – Part 1: general requirements. European Committee for Standardization, Brussels, Belgium. Google Scholar

EN 1912 (2013) Structural timber – strength classes. Assignment of visual grades and species. European Committee for Standardization, Brussels, Belgium.Google Scholar

EN 338 (2016) Structural timber – strength classes. European Committee for Standardization, Brussels, Belgium. Google Scholar

EN 384 (2019) Structural timber – determination of characteristic values of mechanical properties and density. European Committee for Standardization, Brussels, Belgium.Google Scholar

EN 408 (2012) Timber structures – structural timber and glued laminated timber – determination of some physical and mechanical properties. European Committee for Standardization, Brussels, Belgium. Google Scholar

EN 975-1 (2009) Sawn timber – appearance grading of hardwoods – Part 1: Oak and beech. European Committee for Standardization, Brussels, Belgium. Google Scholar

Faydi, Y., Brancheriau, L., Pot, G., Collet, R. (2017) Prediction of oak wood mechanical properties based on the statistical exploitation of vibrational response. BioResources 12:5913–5927. Web of ScienceGoogle Scholar

Faye, C., Legrand, G., Reuling, D., Lanvin, D.-J. (2017) Experimental investigations on the mechanical behaviour of glued laminated beams made of oak. In: Proceedings of INTER, International Network on Timber Engineering Research – Meeting 50. Timber Scientific Publishing, Kyoto, Japan. pp. 193–206. Google Scholar

Fink, G. Influence of varying material properties on the load-bearing capacity of glued laminated timber. PhD thesis, ETH Zürich, Switzerland, 2014. Google Scholar

Foschi, R.O., Barrett, J.D. (1980) Glued-laminated beam strength: a model. ASCE J. Struct. Div. 106:1735–1754. Google Scholar

Frese, M. Die Biegefestigkeit von Brettschichtholz aus Buche. Experimentelle und numerische Untersuchungen zum Laminierungseffekt. PhD thesis. Universitätsverlag Karlsruhe, Karlsruhe, Germany, 2006. Google Scholar

Frühwald, K., Schickhofer, G. (2005) Strength grading of hardwoods. In: Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, Vol. 14. Eberswalde, Germany. pp. 199–210. Google Scholar

Glos, P., Schulz, H. (1980) Stand und Aussichten der maschinellen Schnittholzsortierung. Holz Roh- und Werkstoff 38:409–417. CrossrefGoogle Scholar

Glos, P., Lederer, B. Sortierung von Buchen- und Eichenschnittholz nach der Tragfähigkeit und Bestimmung der zugehörigen Festigkeits- und Steifigkeitskennwerte. Rep. No. 98508. Institut für Holzforschung, TU München, Germany, 2000. Google Scholar

Görlacher, R. (1984) Ein neues Meßverfahren zur Bestimmung des Elastizitätsmoduls von Holz. [A new method for determining the modulus of elasticity of timber]. Holz Roh- und Werkstoff 42:219–222. CrossrefGoogle Scholar

Hu, M., Olsson, A., Johansson, M., Oscarsson, J. (2018) Modelling local bending stiffness based on fibre orientation in sawn timber. Eur. J. Wood Prod. 76:1605–1621. Web of ScienceCrossrefGoogle Scholar

Isaksson, T. Modelling the variability of bending strength in structural timber – length and load configuration effects. PhD thesis, No. TVBK-1015, Lund Institute of Technology – Division of Structural Engineering, Sweden, 1999. Google Scholar

Kass, A.J. (1975) Middle ordinate method measures stiffness variation within pieces of lumber. Forest Prod. J. 25:33–41. Google Scholar

Kline, D., Woeste, F., Bendtsen, B. (1986) Stochastic model for modulus of elasticity of lumber. Wood Fiber Sci. 18:228–238. Google Scholar

Lam, F., Varoglu, E. (1991) Variation of tensile strength along the length of lumber – Part 1: experimental. Wood Sci. Technol. 25:351–359. Google Scholar

Lam, F., Foschi, R.O., Barrett, J.D., He, Q.Y. (1993) Modified algorithm to determine localized modulus of elasticity of lumber. Wood Sci. Technol. 27:81–94. Google Scholar

Lanvin, J.-D., Reuling, D. (2012) Caractérisation du Chêne sessile et pédonculé de France en vue de son utilisation en structure. Revue Forestière Française, LXIV:151–165. Google Scholar

Olsson, A., Oscarsson, J., Serrano, E., Källsner, B., Johansson, M., Enquist, B. (2013) Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation. Eur. J. Wood Prod. 71:319–333. CrossrefWeb of ScienceGoogle Scholar

Olsson, A., Pot, G., Viguier, J., Faydi, Y., Oscarsson, J. (2018) Performance of strength grading methods based on fibre orientation and axial resonance frequency applied to Norway spruce (*Picea abies* L.), Douglas fir (*Pseudotsuga menziesii* (Mirb.) Franco) and European oak (*Quercus petraea* (Matt.) liebl./Quercus robur L.). Ann. Forest Sci. 75:102. Web of ScienceGoogle Scholar

Oscarsson, J., Serrano, E., Olsson, A. (2014) Identification of weak sections in gulam beams using calculated stiffness profiles based on lamination surface scanning. In: Proceedings of the World Conference on Timber Engineering (WCTE 2014). Quebec City, Canada. Google Scholar

Paviot, T. (2018) PythonOCC, 3D CAD/CAE/PLM development framework for the Python programming language, pythonOCC – 3D CAD python. Retrieved from http://www.pythonocc.org/.

Schlotzhauer, P., Wilhelms, F., Lux, C., Bollmus, S. (2018) Comparison of three systems for automatic grain angle determination on European hardwood for construction use. Eur. J. Wood Prod. 76:911–923. CrossrefWeb of ScienceGoogle Scholar

Senft, J.F., Suddarth, S.K., Angleton, H.D. (1962) A new approach to stress grading of lumber. Forest Prod. J. 12:183–186. Google Scholar

Serrano, E. Adhesive joints in timber engineering. Modelling and testing of fracture properties. PhD thesis No. TVSM-1012. Lund University – Division of Structural Engineering, Sweden, 1999. Google Scholar

Showalter, K., Woeste, F., Bendtsen, B. Effect of length on tensile strength in structural lumber. Res. Rep. FPL-RP-482. Forest Products Laboratory, Department of Agriculture, Madison, USA, 1987. Google Scholar

Steffen, A., Johansson, C.J., Wormuth, E.W. (1997) Study of the relationship between flatwise and edgewise moduli of elasticity of sawn timber as a means to improve mechanical strength grading technology. Holz Roh- Werkstoff 55:245–253. CrossrefGoogle Scholar

Sunley, J.G., Hudson, W.M. (1964) Machine-grading lumber in Britain. Forest Prod. J. 14:155–158. Google Scholar

Tapia, C., Aicher, S. (2018a) Modelling the variation of mechanical properties along oak boards. In: Proceedings of INTER, International Network on Timber Engineering Research – Meeting 51. Timber Scientific Publishing, Tallin, Estland. pp. 37–45. Google Scholar

Tapia, C., Aicher, S. (2018b) A stochastic finite element model for glulam beams of hardwoods. In: Proceedings of the World Conference on Timber Engineering (WCTE 2018), (CD-ROM). Seoul, Republic of Korea. Google Scholar

Taylor, S., Bender, D. (1988) Simulating correlated lumber properties using a modified multivariate normal approach. Trans. ASAE 31:182–186. CrossrefGoogle Scholar

Taylor, S., Bender, D. (1991) Stochastic model for localized tensile strength and modulus of elasticity in lumber. Wood Fiber Sci. 23:501–519. Google Scholar

Viguier, J., Jehl, A., Collet, R., Bleron, L., Meriaudeau, F. (2015) Improving strength grading of timber by grain angle measurement and mechanical modeling. Wood Mater. Sci. Eng. 10:145–156. CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.