Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M., Terziev, N. (2012) Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. Bioresources 7:3656–3669.Google Scholar
Candelier, K., Thevenon, M.F., Petrissans, A., Dumarcay, S., Gerardin, P., Petrissans, M. (2016) Control of wood thermal treatment and its effects on decay resistance: a review. Ann. For. Sci. 73:571–583.Web of ScienceCrossrefGoogle Scholar
Castro, G., Zanuttini, R. (2008) Poplar cultivation in Italy: history, state of the art, perspectives. In: Proceedings of the COST Action E44 Final Conference on a European Wood Processing Strategy: Future Resources Matching Products and Innovations, Milan, Italy.Google Scholar
CEN (1993a) EN 314-2:1993. Plywood – Bonding quality – Part 2: Requirements. European Committee for Standardization,Brussels, Belgium.Google Scholar
CEN (1993b) EN 323:1993. Wood-based panels – Determination of density. European Committee for Standardization, Brussels, Belgium.Google Scholar
CEN (1993c) EN 310:1993. Wood-based panels – Determination of modulus of elasticity in bending and of bending strength. European Committee for Standardization, Brussels, Belgium.Google Scholar
CEN (2002) ENV 12038:2002. Durability of wood and wood-based products. Wood based panels. Method of test for determining the resistance against wood-destroying basidiomycetes. European Committee for Standardization, Brussels, Belgium.Google Scholar
CEN (2004a) EN 314-1:2004. Plywood – Bonding quality – Part 1: Test methods. European Committee for Standardization, Brussels, Belgium.Google Scholar
CEN (2004b) EN 13986:2004+A1:2015. Wood-based panels for use in construction. Characteristics, evaluation of conformity and marking. European Committee for Standardization, Brussels, Belgium.Google Scholar
CEN (2012) EN 636:2012+A1:2015. Plywood. Specifications. European Committee for Standardization, Brussels, Belgium.Google Scholar
CEN (2016) EN 350:2016. Durability of wood and wood-based products – testing and classification of the durability to biological agents of wood and wood-based materials. European Committee for Standardization, Brussels, Belgium.Google Scholar
Cetera, P., Negro, F., Cremonini, C., Todaro, L., Zanuttini, R. (2018) Physico-mechanical properties of thermo-treated poplar OSB. Forests 9:345.CrossrefGoogle Scholar
EPF. Annual Report 2016–2017. European Panel Federation, Brussels, 2017.Google Scholar
Esteves, B.M., Pereira, H.M. (2009) Wood modification by heat treatment: a review. Bioresources 4:370–404.Google Scholar
Esteves, B.M., Graça, J., Pereira, H. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.Web of ScienceGoogle Scholar
EU. (2010) Regulation (EU) no 995/2010 of the European Parliament and of the Council of 20 October 2010 laying down the obligations of operators who place timber and timber products on the market. The European Parliament and the Council of the European Union, Brussels, Belgium.Google Scholar
Fragnelli, G., Castro, G., Zanuttini, R. Poplar cultivation and Italian poplar plywood (in Italian). Assopannelli–Federlegnoarredo, Milano, 2013.Google Scholar
Gamache, S.L., Espinoza, O., Aro, M. (2017) Professional consumer perceptions about thermally modified wood. Bioresources 12:9487–9501.Web of ScienceGoogle Scholar
Gao, J., Sik Kim, J., Terziev, N., Daniel, G. (2016) Decay resistance of softwoods and hardwoods thermally modified by the Thermovouto type thermo-vacuum process to brown rot and white rot fungi. Holzforschung 70:877–884.CrossrefWeb of ScienceGoogle Scholar
Goli, G., Cremonini, C., Negro, F., Zanuttini, R., Fioravanti, M. (2014) Physical-mechanical properties and bonding quality of heat treated poplar (I-214 clone) and ceiba plywood. iForest 8:687–692.Web of ScienceGoogle Scholar
Humar, M., Kržišnik, D., Lesar, B., Thaler, N., Ugovšek, A., Zupančič, K., Žlahtič, M. (2017) Thermal modification of wax-impregnated wood to enhance its physical, mechanical, and biological properties. Holzforschung 71:57–64.Web of ScienceGoogle Scholar
ISO. (2008) ISO 11664-4:2008 Colorimetry – Part 4: CIE 1976 L*a*b* Colour space. International Organization for Standardization, Geneva, Switzerland.Google Scholar
Levarato, G., Pra, A., Pettenella, D. Which future for poplar cultivation? Investigation on the current framework and on the future perspectives of industrial use of poplar timber (in Italian). Etifor srl, Padova, 2018.Google Scholar
Marcon, B., Goli, G., Matsuo-Ueda, M., Denaud, L., Umemura, K., Gril, J., Kawai, S. (2018) Kinetic analysis of poplar wood properties by thermal modification in conventional oven. iForest 11:131–139.CrossrefWeb of ScienceGoogle Scholar
Pockrandt, M., Jebrane, M., Cuccui, I., Allegretti, O., Uetimane, Jr., E., Terziev, N. (2018) Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique. Holzforschung 72:701–709.Web of ScienceCrossrefGoogle Scholar
Ringman, R., Pilgård, A., Brischke, C., Richter, K. (2014) Mode of action of brown rot decay resistance in modified wood: a review. Holzforschung 68:239–246.Web of ScienceGoogle Scholar
Samaržija-Jovanović, S., Jovanović, V., Konstantinović, S., Marković, G., Marinović-Cincovic, M. (2011) Thermal behavior of modified urea–formaldehyde resins. J. Therm. Anal. Calorim. 104:1159–1166.CrossrefWeb of ScienceGoogle Scholar
Sandak, A., Allegretti, A., Cuccui, I., Sandak, J., Rosso, L., Castro, G., Negro, F., Cremonini, C., Zanuttini, R. (2016) Thermo-vacuum modification of poplar veneers and its quality control. Bioresources 11:10122–10139.Web of ScienceGoogle Scholar
Siimer, K., Christjanson, P., Kaljuvee, T., Pehk, T., Lasn, I., Saks, I. (2008) TG-DTA study of melamine-urea-formaldehyde resins. J. Therm. Anal. Calorim. 92:19–27.Web of ScienceCrossrefGoogle Scholar
Todaro, L., Rita, A., Negro, F., Moretti, N., Saracino, A., Zanuttini, R. (2015) Behavior of pubescent oak (Quercus pubescens Willd.) wood to different thermal treatments. iForest 8:748–755.CrossrefWeb of ScienceGoogle Scholar
Welzbacher, C.R., Brischke, C., Rapp, O.A. (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mat. Sci. Eng. 2:66–76.CrossrefGoogle Scholar
Windeisen, R., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.Web of ScienceCrossrefGoogle Scholar
Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63:773–778.Web of ScienceGoogle Scholar
Comments (0)