Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Investigation of the effect of aging on wood hygroscopicity by 2D 1H NMR relaxometry

Leila Rostom
  • Laboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denis Courtier-Murias
  • Laboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stéphane Rodts
  • Laboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sabine Care
  • Corresponding author
  • Laboratoire Navier, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-11-07 | DOI: https://doi.org/10.1515/hf-2019-0052

Abstract

Two-dimensional proton nuclear magnetic resonance (2D 1H NMR) relaxometry is increasingly used in the field of wood sciences due to its great potential in detecting and quantifying water states at the level of wood constituents. More precisely, in this study, this technique is used to investigate the changes induced by “natural” and “artificial” aging methods on modern and historical oak woods. Two bound water components are detected and present differences in terms of association to the different wood polymers in cell walls: one is more strongly associated with wood polymers than the other. The evolution of the two bound water types is discussed in regard to aging methods and is related to the structure of the cell wall, especially with the S2 layer and the evolution of wood chemical composition (cellulose, hemicelluloses and lignin). The evolution of hydric strains is also discussed taking into account the effect of aging methods on the two bound water components. The obtained results confirm the ability of 2D 1H NMR relaxometry to evaluate the effect of aging at the molecular level and on hydric deformation. Furthermore, this method shows that it is possible to determine the moisture content of wood without the necessity to oven-dry the wood material.

This article offers supplementary material which is provided at the end of the article.

Keywords: 2D NMR relaxometry; aging; deformation; extractives; hydric cycles; oak wood; thermal treatment

References

  • Araujo, C.D., Avramidis, S., MacKay, A.L. (1994) Behaviour of solid wood and bound water as a function of moisture content: a proton magnetic resonance study. Holzforschung 48:69–74.CrossrefGoogle Scholar

  • Beck, G., Thybring, E.E., Thygesen, L.G., Hill, C. (2018) Characterization of moisture in acetylated and propionylated radiata pine using low-field nuclear magnetic resonance (LFNMR) relaxometry. Holzforschung 72:225–233.CrossrefWeb of ScienceGoogle Scholar

  • Bonnet, M. (2017) Analyse multi-échelle du comportement hygromécanique du bois: Mise en évidence par relaxométrie du proton et mesures de champs volumiques de l’influence de l’hétérogénéité au sein du cerne (Doctoral dissertation, Université Paris-Est, France). In French.Google Scholar

  • Bonnet, M., Courtier-Murias, D., Faure, P., Rodts, S., Care, S. (2017) NMR determination of sorption isotherms in earlywood and latewood of Douglas fir. Identification of bound water components related to their local environment. Holzforschung 71:481–490.Web of ScienceCrossrefGoogle Scholar

  • Boyd, J.D. (1982) An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength. In: New Perspectives in Wood Anatomy. Ed. Baas, P. Forestry Sciences, Vol 1. Springer, Dordrecht. pp. 171–222.Google Scholar

  • Candelier, K. (2013) Caractérisation des transformations physico-chimiques intervenant lors de la thermodégradation du bois. Influence de l’intensité de traitement, de l’essence et de l’atmosphère (Doctoral dissertation, Université de Lorraine). In French.Google Scholar

  • Candelier, K., Thevenon, M.F., Petrissans, A., Dumarcay, S., Gerardin, P., Petrissans, M. (2016) Control of wood thermal treatment and its effects on decay resistance: a review. Ann. Forest Sci. 73:571–583.Web of ScienceCrossrefGoogle Scholar

  • Carr, H.Y., Purcell, E.M. (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630.CrossrefGoogle Scholar

  • Chaouch, M. (2011) Effet de l’intensité du traitement sur la composition élémentaire et la durabilité du bois traité thermiquement: développement d’un marqueur de prédiction de la résistance aux champignons basidiomycètes (Doctoral dissertation, Nancy 1). In French.Google Scholar

  • Chaouch, M., Pétrissans, M., Pétrissans, A., Gérardin, P. (2010) Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stabil. 95:2255–2259.Web of ScienceCrossrefGoogle Scholar

  • Cox, J., McDonald, P.J., Gardiner, B.A. (2010) A study of water exchange in wood by means of 2D NMR relaxation correlation and exchange. Holzforschung 64:259–266.Web of ScienceGoogle Scholar

  • Endo, K., Obataya, E., Zeniya, N., Matsuo, M. (2016) Effects of heating humidity on the physical properties of hydrothermally treated spruce wood. Wood Sci. Technol. 50:1161–1179.CrossrefWeb of ScienceGoogle Scholar

  • Épaud, F. (2007) De la charpente romane à la charpente gothique en Normandie. Évolution des techniques et des structures de charpenterie aux XIIe-XIIIe siècles, Caen, Publications du CRAHM (« Archéologie médiévale »), 624 pp. In French.Google Scholar

  • Esteves, B., Pereira, H. (2008) Wood modification by heat treatment: a review. BioResources 4:370–404.Google Scholar

  • Fayolle, B., Verdu, J. (2005) Vieillissement physique des matériaux polymères. Ed. Techniques Ingénieur. In French.Google Scholar

  • Fourmentin, M. (2015) Impact de la répartition et des transferts d’eau sur les propriétés des matériaux de construction à base de chaux formulées. PhD thesis: Université Paris-Est, France. In French.Google Scholar

  • Fredriksson, M., Garbrecht Thygesen, L. (2017) The states of water in Norway spruce (Picea abies (L.) Karst.) studied by low-field nuclear magnetic resonance (LFNMR) relaxometry: assignment of free-water populations based on quantitative wood anatomy. Holzforschung 71:77–90.CrossrefWeb of ScienceGoogle Scholar

  • Froidevaux, J. (2012) Wood and paint layers aging and risk analysis of ancient panel painting (Doctoral dissertation, Université Montpellier II-Sciences et Techniques du Languedoc).Google Scholar

  • Gauvin, C. (2015) Étude expérimentale et numérique du comportement hygromécanique d’un panneau de bois. Application à la conservation des tableaux peints sur bois du patrimoine (Doctoral dissertation, University of Montpellier, France). In French.Google Scholar

  • Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Chichester, West Sussex, UK, 2006.Google Scholar

  • Hillis, W.E. (1971) Distribution, properties and formation of some wood extractives. Wood Sci. Technol 5:272–289.CrossrefGoogle Scholar

  • Inari, G.N., Pétrissans, M., Pétrissans, A., Gérardin, P. (2009) Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polym. Degrad. Stability 94:365–368.Web of ScienceCrossrefGoogle Scholar

  • Jankowska, A., Drożdżek, M., Sarnowski, P., Horodeński, J. (2017) Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical wood species. BioResource 12:597–607.Google Scholar

  • Kekkonen, P. (2014) Characterization of thermally modified wood by NMR spectroscopy: microstructure and moisture components (Academic dissertation, University of Oulu, Finland).Google Scholar

  • Kollmann, F., Fengel, D. (1965) Changes in chemical composition of wood by thermal treatment. Holz als Roh- und Werkstoff 23:461.Google Scholar

  • Kranitz, K. (2014) Effect of natural aging on wood (doctoral dissertation, ETH-Zürich, Switzerland).Google Scholar

  • Kránitz, K., Sonderegger, W., Bues, C.T., Niemz, P. (2016) Effects of aging on wood: a literature review. Wood Sci. Technol. 50:7–22.CrossrefWeb of ScienceGoogle Scholar

  • Labbé, N., Jéso, B.D., Lartigue, J.-C., Daudé, G., Pétraud, M., Ratier, M. (2002) Moisture content and extractive materials in maritime pine wood by low field 1H NMR. Holzforschung 56:25–31.CrossrefGoogle Scholar

  • Matsuo, M., Yokoyama, M., Umemura, K., Sugiyama, J., Kawai, S., Gril, J., Kubodera, S., Mitsutani, T., Ozaki, H., Sakamoto, M., Imamura, M. (2011) Aging of wood – Analysis of color changing during natural aging and heat treatment. Holzforschung 65:361–368.Google Scholar

  • Meiboom, S., Gill, D. (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–691.CrossrefGoogle Scholar

  • Menon, R.S., Mackay, A.L., Hailey, J.R.T., Bloom, M., Burgess, A.E., Swanson, J.S. (1987) An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polym. Sci. 33:1141–1155.CrossrefGoogle Scholar

  • Murata, K., Watanabe, Y., Nakano, T. (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197.Web of ScienceCrossrefPubMedGoogle Scholar

  • Obataya, E. (2007) Effects of ageing and heating on the mechanical properties of wood. In: Wood Science for Conservation of Cultural Heritage, Florence 2007: Proceedings of the International Conference Hld by Cost Action IE0601 in Florence (Italy), 8–10 November 2007 (pp. 1000–1008). Firenze University Press.Google Scholar

  • Rajohnson, J.R. (1996) Etude expérimentale et modélisation du traitement thermique de rétification du bois massif sous gaz convectif en vue d’améliorer ses propriétés physico-chimiques (Doctoral dissertation, Ecole Nationale Supérieure des Mines de Saint-Etienne). In French.Google Scholar

  • Rautkari, L., Hill, C.A., Curling, S., Jalaludin, Z., Ormondroyd, G. (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 48:6352–6356.Web of ScienceCrossrefGoogle Scholar

  • Salmén, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.Google Scholar

  • Sandberg, D., Haller, P., Navi, P. (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 8:64–88.CrossrefGoogle Scholar

  • Song, Y.Q., Venkataramanan, L., Hürlimann, M.D., Flaum, M., Frulla, P., Straley, C. (2002) T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154:261–268.CrossrefGoogle Scholar

  • Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff 56:149.CrossrefGoogle Scholar

  • Wentzel, M., Altgen, M., Militz, H. (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems. Wood Sci. Technol. 52:889–907.Web of ScienceCrossrefGoogle Scholar

About the article

aDeceased prior to the publication of this article.


Received: 2019-02-26

Accepted: 2019-08-29

Published Online: 2019-11-07


Author contributions: L.R., D.C-M, S.R. and S.C. conceived and designed the experiments. L.R. carried out the experiments. L.R., D.C-M and S.C. analyzed and interpreted data and wrote the manuscript.

Research funding: The I-Site Future (Champs-sur-Marne, France) for its financial support and Atelier Perrault (Nantes, France) for providing aged wood are acknowledged.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190052, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0052.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in