Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Enhanced bonding of acetylated wood with an MUF-based adhesive and a resorcinol-formaldehyde-based primer

Andreas Treu / Ronny Bredesen / Ferry Bongers
Published Online: 2019-10-25 | DOI: https://doi.org/10.1515/hf-2019-0056

Abstract

Acetylated wood is a durable and dimensionally stable product with many potential applications in exterior timber structures. Research has shown that acetylated wood can be effectively bonded by various adhesive types. However, one of the most commonly used adhesives for timber constructions, melamine urea formaldehyde (MUF), shows poor performance in combination with acetylated wood in delamination tests based on cyclic wetting and drying. The hydrophobic acetylated wood surface leads to reduced adhesion due to poorer adhesive wetting and fewer chemical bonds between the resin and the wood polymers. The use of a resorcinol-formaldehyde (RF)-based primer on the acetylated wood surface prior to the application of MUF leads to positive gluing results with both acetylated radiata pine and beech, providing significantly improved resistance to delamination. Radial penetration of the primer and MUF in acetylated wood shows higher penetration compared with untreated wood. In addition, a phenol resorcinol-formaldehyde adhesive system showed high resistance against delamination and can be used for gluing of acetylated wood.

Keywords: acetylation; gluing; melamine urea formaldehyde; radiata pine; resorcinol-formaldehyde

References

  • Bamber, R.K., Burley, J., Bureaux, C.A. The Wood properties of radiata pine. Commonwealth Agricultural Bureaux, Slough, 1983.Google Scholar

  • Bastani, A., Adamopoulos, S., Militz, H. (2015) Gross adhesive penetration in furfurylated, N-methylol melamine-modified and heat-treated wood examined by fluorescence microscopy. Eur. J. Wood Wood Prod. 73:635–642.CrossrefGoogle Scholar

  • Bastani, A., Adamopoulos, S., Koddenberg, T., Militz, H. (2016) Study of adhesive bondlines in modified wood with fluorescence microscopy and X-ray micro-computed tomography. Int. J. Adhes. Adhes. 68:351–358.CrossrefGoogle Scholar

  • Beck, G., Strohbusch, S., Larnoy, E., Militz, H., Hill, C. (2018) Accessibility of hydroxyl groups in anhydride modified wood as measured by deuterium exchange and saponification. Holzforschung 72:17–23.Google Scholar

  • Boehme, C., Hora, G. (1996) Water absorption and contact angle measurement of native European, North American and tropical wood species to predict gluing properties. Holzforschung 50:269–276.CrossrefGoogle Scholar

  • Bongers, F., Alexander, J. (2018) Strength classification of acetylated radiata pine. Paper Presented at the European Conference on Wood Modification, Arnhem, The Netherlands.Google Scholar

  • Bongers, F., Alexander, J., Marcroft, J., Crawford, D., Hairstans, R. (2013) Structural design with Accoya wood. Int. Wood Prod. J. 4:172–176.CrossrefGoogle Scholar

  • Bongers, F., Meijerink, T., Lütkemeier, B., Lankveld, C., Alexander, J., Militz, H., Lehringer, C. (2016) Bonding of acetylated wood. Int. Wood Prod. J. 7:102–106.CrossrefGoogle Scholar

  • Brandon, R., Ibach, R.E., Frihart, C.R. Effects of chemically modified wood on bond durability. In: Wood Adhesives 2005, San Diego, California, November 2–4, 2005. Forest Products Society. pp. 111–114.Google Scholar

  • Bryne, L.E., Wålinder, M.E.P. (2010) Ageing of modified wood. Part 1: wetting properties of acetylated, furfurylated, and thermally modified wood. Holzforschung 64:295–304.Google Scholar

  • Chandler, J.G., Brandon, R.L., Frihart, C.R. (2005) Examination of adhesive penetration in modified wood using fluorescence microscopy. In: ASC Spring 2005 Convention and Exposition: April 17–20, Columbus, OH, Adhesive and Sealant Council, Bethesda, MD, USA, pp. 10.Google Scholar

  • Cyr, P.-L., Riedl, B., Wang, X.-M. (2008) Investigation of Urea-Melamine-Formaldehyde (UMF) resin penetration in Medium-Density Fiberboard (MDF) by High Resolution Confocal Laser Scanning Microscopy. Holz Roh Werkstoff 66:129–134.CrossrefGoogle Scholar

  • Frese, M., Blaß, H.J. (2014) Dauerhaftes Brettschichtholz aus acetylierter Radiata Kiefer [Durable timber structures made of acetylated radiata pine]. Bautechnik 91:23–30.CrossrefGoogle Scholar

  • Frihart, C.R., Brandon, R., Ibach, R.E. Selectivity of bonding for modified wood. In: Proceedings 27th Annual Meeting of the Adhesion Society, Inc., 2004. pp. 15–18.Google Scholar

  • Frihart, C.R., Brandon, R., Beecher, J.F., Ibach, R.E. (2017) Adhesives for achieving durable bonds with acetylated wood. Polymers 9:731–743.CrossrefGoogle Scholar

  • Gardner, D.J., Frazier, C.E., Christiansen, A.W. (2005) Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol. Wood Adhesives 2005: November 2–4, 2005, San Diego, California, USA. Forest Products Society, Madison, WI, USA. pp. 93–97. ISBN: 1892529459.Google Scholar

  • Gavrilović-Grmuša, I., Miljković, J., Ðiporović-Momčilović, M. (2010) Influence of the degree of condensation on the radial penetration of urea-formaldehyde adhesives into silver fir (Abies alba, Mill.) wood tissue. J. Adhes. Sci. Technol. 24:1437–1453.CrossrefGoogle Scholar

  • Gindl, W. (2001) SEM and UV-microscopic investigation of glue lines in Parallam® PSL. Holz Roh Werkstoff 59:211–214.CrossrefGoogle Scholar

  • Hass, P., Stampanoni, M., Kästner, A., Mannes, D., Niemz, P. 3D characterization of adhesive penetration into wood by means of synchrotron radiation. In: International Conference on Wood Adhesives Proceedings: Session 5A – Analytical, 2009. pp.348–351.Google Scholar

  • Hunt, C.G., Brandon, R., Ibach, R.E., Frihart, C.R. What does bonding to modified wood tell us about adhesion? In: The 5th COST E34 International Workshop, Bled, Slovenia, 2007.Google Scholar

  • Hunt, C.G., Frihart, C.R., Dunky, M., Rohumaa, A. (2018) Understanding wood bonds-going beyond what meets the eye: a critical review. Rev. Adhes. Adhes. 6:369–440.CrossrefGoogle Scholar

  • Johnson, S.E., Kamke, F.A. (1992) Quantitative-analysis of gross adhesive penetration in wood using fluorescence microscopy. J. Adhes. 40:47–61.CrossrefGoogle Scholar

  • Jorissen, A., Luning, E. (2010) Wood modification in relation to bridge design in The Netherlands. Paper Presented at the World Conference on Timber Engineering, Trentino, Italy, June 2010. Eds. Ceccotti, A., van der Kuilen, J.-W. pp. 1–9.Google Scholar

  • Kamke, F.A., Lee, J.N. (2007) Adhesive penetration in wood – a review. Wood Fiber Sci. 39:205–220.Google Scholar

  • Knorz, M., Schmidt, M., Torno, S., van de Kuilen, J.W. (2014) Structural bonding of ash (Fraxinus excelsior L.): resistance to delamination and performance in shearing tests. Eur. J. Wood Wood Prod. 72:297–309.CrossrefGoogle Scholar

  • Knorz, M., Neuhaeuser, E., Torno, S., van de Kuilen, J.W. (2015) Influence of surface preparation methods on moisture-related performance of structural hardwood-adhesive bonds. Int. J. Adhes. Adhes. 57:40–48.CrossrefGoogle Scholar

  • Konnerth, J., Kluge, M., Schweizer, G., Miljković, M., Gindl-Altmutter, W. (2016) Survey of selected adhesive bonding properties of nine European softwood and hardwood species. Eur. J. Wood Wood Prod. 74:809–819.CrossrefGoogle Scholar

  • Kurt, R., Krause, A., Militz, H., Mai, C. (2008) Hydroxymethylated resorcinol (HMR) priming agent for improved bondability of wax-treated wood. Holz Roh Werkstoff 66:333–338.CrossrefGoogle Scholar

  • Marra, A.A. (1992) Technology of wood bonding: principles in practice. New York: Van Nostrand Reinhold.Google Scholar

  • Mendoza, M., Hass, P., Wittel, F.K., Niemz, P., Herrmann, H.J. (2012) Adhesive penetration of hardwood: a generic penetration model. Wood Sci. Technol. 46:529–549.CrossrefGoogle Scholar

  • Moghaddam, M.S., Wålinder, M.E.P., Claesson, P.M., Swerin, A. (2016) Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung 70:69–77.CrossrefGoogle Scholar

  • Ormstad, E. (2007) Gluing of treated wood with Dynea adhesives. In: The 5th COST E34 International Workshop, Bled, Slovenia.Google Scholar

  • Papp, E.A., Csiha, C. (2017) Contact angle as function of surface roughness of different wood species. Surf. Interfaces 8:54–59.CrossrefGoogle Scholar

  • Paris, J.L., Kamke, F.A. (2015) Quantitative wood-adhesive penetration with X-ray computed tomography. Int. J. Adhes. Adhes. 61:71–80.CrossrefGoogle Scholar

  • Popescu, C.-M., Hill, C.S., Curling, S., Ormondroyd, G., Xie, Y. (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J. Mater. Sci. 49:2362–2371.CrossrefGoogle Scholar

  • Resorcinol Based Resins and Applications (2005). In: Resorcinol: Chemistry, Technology and Applications. Springer, Berlin, Heidelberg. pp. 179–261.Google Scholar

  • Rodrı́guez-Valverde, M.A., Cabrerizo-Vı́lchez, M.A., Rosales-López, P., Páez-Dueñas, A., Hidalgo-Álvarez, R. (2002) Contact angle measurements on two (wood and stone) non-ideal surfaces. Colloids Surf. A Physicochem. Eng. Aspects 206:485–495.CrossrefGoogle Scholar

  • Rowell, R.M., Dickerson, J.P. (2014) Acetylation of wood. In: Deterioration and Protection of Sustainable Biomaterials, vol. 1158. ACS Symposium Series. American Chemical Society. pp. 301–327.Google Scholar

  • Scheikl, M., Dunky, M. (1998) Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52:89–94.CrossrefGoogle Scholar

  • Schmidt, M., Glos, P., Wegener, G. (2010) Verklebung von Buchenholz für tragende Holzbauteile [Gluing of European beech wood for load bearing timber structures]. Eur. J. Wood Wood Prod. 68:43–57.CrossrefGoogle Scholar

  • Sernek, M., Resnik, J., Kamke, F.A. (1999) Penetration of liquid urea-formaldehyde adhesive into beech wood. Wood Fiber Sci. 31:41–48.Google Scholar

  • Sernek, M., Boonstra, M., Pizzi, A., Despres, A., Gérardin, P. (2008) Bonding performance of heat treated wood with structural adhesives. Holz Roh Werkstoff 66:173–180.CrossrefGoogle Scholar

  • Tjeerdsma, B.F., Bongers, F. (2009) The making of a traffic timber bridge of acetylated radiata pine. Paper Presented at the European Conference on Wood Modification, Stockholm, Sweden.Google Scholar

  • Treu, A., Bredesen, R., Bongers, F. (2017) The potential and the challenges of acetylated wood in timber bridges – experiences from an ongoing project. Paper Presented at the International Research Group on Wood Protection, Ghent, Belgium.Google Scholar

  • Vick, C.B. (1995) Hydroxymethylated resorcinol coupling agent for enhanced adhesion of epoxy and other thermosetting adhesives to wood. In: Wood Adhesives 1995, Proceedings of a Symposium. pp. 29–30.Google Scholar

  • Vick, C.B. Adhesive bonding of wood materials. Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, Madison, WI, 1999. General technical report FPL, GTR-113. pp. 9.1–9.24.Google Scholar

  • Vick, C.B., Okkonen, E.A. (2000) Durability of one-part polyurethane bonds to wood improved by HMR coupling agent. Forest Prod. J. 50:69–75.Google Scholar

  • Vick, C.B., Rowell, R.M. (1990) Adhesive bonding of acetylated wood. Int. J. Adhes. Adhes. 10:263–272.CrossrefGoogle Scholar

  • Vick, C.B., Larsson, P.C., Mahlberg, R.L., Simonson, R., Rowell, R.M. (1993) Structural bonding of acetylated Scandinavian softwoods for exterior lumber laminates. Int. J. Adhes. Adhes. 13:139–149.CrossrefGoogle Scholar

  • Wålinder, M.E.P., Ström, G. (2001) Measurement of wood wettability by the Wilhelmy method. Part 2. Determination of apparent contact angles. Holzforschung 55:21–32.Google Scholar

  • Wang, Y., Spencer, P. (2002) Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J. Biomed. Mater. Res. 59:46–55.PubMedCrossrefGoogle Scholar

  • Zimmer, K., Treu, A., McCulloh, K.A. (2014) Anatomical differences in the structural elements of fluid passage of Scots pine sapwood with contrasting treatability. Wood Sci. Technol. 48:435–447.CrossrefGoogle Scholar

About the article

Received: 2019-02-27

Accepted: 2019-09-03

Published Online: 2019-10-25


Funding Source: Norwegian Research Council

Award identifier / Grant number: 244272/E50

Norwegian Research Council, Funder Id: http://dx.doi.org/10.13039/501100005416, Grant Number: 244272/E50


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190056, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0056.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in