Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

The effect of diammonium phosphate and sodium silicate on the adhesion and fire properties of birch veneer

Saara Hautamäki
  • Corresponding author
  • Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02150, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Altgen
  • Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02150, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniela Altgen
  • Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02150, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erik LarnøyORCID iD: https://orcid.org/0000-0002-8724-4010 / Tuomas Hänninen
  • Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02150, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lauri Rautkari
  • Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02150, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-09-24 | DOI: https://doi.org/10.1515/hf-2019-0059

Abstract

In built environments the combustibility of wood is a great concern, which limits the use of wood as a building material due to legislation. The reaction-to-fire properties of wood can be altered with the use of fire-retardant chemicals, and most of the commonly used fire retardants already have a long history of use. However, only limited information is available on the impact of different fire retardants on the adhesion properties of wood. Additionally, comparative studies between chemicals from different groups of fire retardants is scarce. The objective of this study was to investigate and compare the effects of two commonly used fire retardants, sodium silicate (SS) and diammonium phosphate (DAP), on veneer properties, the focus being especially on thermal behavior and adhesion. Thermal properties and combustibility were studied using thermogravimetric analysis (TGA), flame test and calorimetry. Glue bond strength was analyzed with an automated bonding evaluation system (ABES) and the leaching of chemicals was determined according to EN84. Additionally, the surface characteristics of modified veneers were imaged with scanning electron microscopy (SEM). Results revealed notable differences in the thermal properties of SS and DAP, with DAP having better fire-retardant performance in all thermal testing. SS also affected thermal properties and combustibility of modified veneers, but the effect was only moderate compared to DAP. Neither SS or DAP had any significant resistance against leaching but ABES testing showed a notable increase in the glue bond strength of DAP modified veneers.

Keywords: adhesion; diammonium phosphate; fire retardant chemicals; sodium silicate; wood combustion

References

  • Altun, S., Ozcifci, A., Şenel, A., Baysal, E., Toker, H. (2010) Effects of silica gel on leaching resistance and thermal properties of impregnated wood. Wood Res. 55:2010–2101.Google Scholar

  • Ayrilmis, N., Akbulut, T., Dundar, T., White, R.H., Mengeloglu, F., Buyuksari, U., Candan, Z., Avci, E. (2012) Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites. Constr. Build. Mater. 33:63–69.CrossrefWeb of ScienceGoogle Scholar

  • Basak, S., Samanta, K.K., Chattopadhyay, S.K., Das, S., Narkar, R., Dsouza, C., Shaikh, A.H. (2014) Flame retardant and antimicrobial jute textile using sodium metasilicate nonahydrate. Polish J. Chem. Technol. 16:106–113.CrossrefWeb of ScienceGoogle Scholar

  • Baysal, E., Sonmez, A., Colak, M., Toker, H. (2006) Amount of leachant and water absorption levels of wood treated with borates and water repellents. Bioresour. Technol. 97:2271–2279.PubMedCrossrefGoogle Scholar

  • Black, J.M. (1958) The effect of fire-retardant chemicals on glues used in plywood manufacture. Forest Products Laboratory, U.S. Department of Agriculture Forest Service. Report No. 1427.Google Scholar

  • Boonstra. M. (1997) Preservative treated wood. In: Harmonization of leaching/extraction tests. Eds. Heasman, L., van der Sloot, H.A., Quevauviller, P. Elsevier, Amsterdam, Netherlands. pp. 212–220.Google Scholar

  • Browne, F. (1958) Theories of the combustion of wood and its control. In: U.S. Forest Service no. 2136. Forest Product Laboratory, Madison, WI. pp. 20–33.Google Scholar

  • Di Blasi, C., Branca, C., Galgano, A. (2007) Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Ind. Eng. Chem. Res. 46:430–438.Web of ScienceCrossrefGoogle Scholar

  • Grancaric, A.M., Botteri, L., Alongi, J., Malucelli, G. (2015) Synergistic effects occurring between water glasses and urea/ammonium dihydrogen phosphate pair for enhancing the flame retardancy of cotton. Cellulose 22:2825–2835.Web of ScienceCrossrefGoogle Scholar

  • Grexa, O., Horváthová, E., Bešinová, O., Lehocký, P. (1999) Flame retardant treated plywood. Polym. Degrad. Stab. 64:529–533.CrossrefGoogle Scholar

  • Holmes, C.A. (1976) Effect of fire-retardant treatments on performance properties of wood. Abstr. Pap. Am. Chem. Soc. 172:38.Google Scholar

  • Jost, M., Sernek, M. (2009) Shear strength development of the phenol-formaldehyde adhesive bond during cure. Wood Sci. Technol. 43:153–166.CrossrefWeb of ScienceGoogle Scholar

  • Kline, G.M., Reinhart, F.W., Rinker, R.C., DeLollis, N.J. (1946) Effect of catalysts and pH on strength of resin-bonded plywood. J. Res. Natl. Bur. Stand. (1934) 37:281–31.0.CrossrefGoogle Scholar

  • Kozlowski, R., Wladyka-Przybylak, M. (2000) Natural polymers, wood and lignocellulosic materials. In: Fire retardant materials. Eds. Horrocks, A.R., Price, D. Woodhead Publishing Limited, Cambridge. pp. 293–317.Google Scholar

  • Lebow, S.T., Winandy, J.E. (1999) Effect of fire-retardant treatment on plywood pH and the relationship of pH to strength properties. Wood Sci. Technol. 33:285–298.CrossrefGoogle Scholar

  • Lee, S.J., Thole, V. (2018) Investigation of modified water glass as adhesive for wood and particleboard: mechanical, thermal and flame retardant properties. Eur. J. Wood Wood Prod. 76:1427–1434.CrossrefWeb of ScienceGoogle Scholar

  • LeVan, S.L., Jerrold, E.W. (1990) Effects of fire-retardant treatments on wood strength: a review. Wood Fiber Sci. 22:113–131.Google Scholar

  • LeVan, S.L., Kim, J.M., Nagel, R.J., Evans, Ja.W. (1996) Mechanical properties of fire-retardant-treated plywood after cyclic temperature exposure. For. Prod. J. 46:64–71.Google Scholar

  • Lowden, L.A., Hull, T.R. (2013) Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2:1–9.Google Scholar

  • Mai, C., Militz, H. (2004) Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: a review. Wood Sci. Technol. 37:339–348.CrossrefGoogle Scholar

  • Nguyen, T.T., Nguyen, T.V.K., Xiao, Z., Wang, F., Zheng, Z., Che, W., Xie, Y. (2019) Combustion behavior of poplar (Populus adenopoda Maxim.) and radiata pine (Pinus radiata Don.) treated with a combination of styrene-acrylic copolymer and sodium silicate. Eur. J. Wood Wood Prod. 77:439–452.Web of ScienceCrossrefGoogle Scholar

  • Obanda, D.N., Shupe, T.F., Barnes, H.M. (2008) Reducing leaching of boron-based wood preservatives – a review of research. Bioresour. Technol. 99:7312–7322.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Östman, B., Tsantaridis, L. (2016a) Durability of the reaction to fire performance for fire retardant treated (FRT) wood products in exterior applications – a ten years report. In: MATEC Web of Conferences 46.Google Scholar

  • Östman, B., Tsantaridis, L. (2016b) Fire retardant treated wood products – properties and uses. In: Proceedings IRG Annual Meeting in Lisbon, Portugal. IRG Secretariat, Stockholm, Sweden. pp. 1–14.Google Scholar

  • Östman, B., Voss, A., Hughes, A., Hovde, P.J., Grexa, O. (2001) Durability of fire retardant treated wood products at humid and exterior conditions review of literature. Fire Mater. 25:95–104.CrossrefGoogle Scholar

  • Pries, M., Mai, C. (2013) Fire resistance of wood treated with a cationic silica sol. Eur. J. Wood Wood Prod. 71:237–244.Web of ScienceCrossrefGoogle Scholar

  • Riedl, B., He, G. (2004) Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Sci. Technol. 38:69–81.CrossrefGoogle Scholar

  • Rohumaa, A., Hunt, C.G., Frihart, C.R., Saranpää, P., Ohlmeyer, M., Hughes, M. (2014) The influence of felling season and log-soaking temperature on the wetting and phenol formaldehyde adhesive bonding characteristics of birch veneer. Holzforschung 68:965–970.Web of ScienceGoogle Scholar

  • Rowell, R.M., Dietenberger, M.A. (2012) Thermal properties, combustion, and fire retardancy of wood. In: Handbook of wood chemistry and wood composites. Ed. Rowell, R.M. CRC Press, Boca Raton, FL. pp. 127–150.Google Scholar

  • Rowell, R.M., Susott, R.A. (1982) Bonding fire retardants to wood. Part I. Thermal behavior of chemical bonding agents. Wood Fiber 16:214–223.Google Scholar

  • Sam Williams, R. (2010) wood_handbook_fpl_2010. Gen. Tech. Rep. FPL-GTR-190. Retrieved from https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf. Accessed date: 11 February 2019.

  • Selbo, M.L. (1959) Summary of information on gluing of treated wood. Forest Products Laboratory, U. S. Department of Agriculture Forest Service. Report No. 1729.Google Scholar

  • Sernek, M. (2002) Comparative analysis of inactivated wood surfaces comparative analysis of inactivated wood surfaces. Holzforschung 58:22–31.Google Scholar

  • Shabir Mahr, M., Hübert, T., Schartel, B., Bahr, H., Sabel, M., Militz, H. (2012) Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites. J. Sol-Gel Sci. Technol. 64:452–464.CrossrefWeb of ScienceGoogle Scholar

  • Shafizadeh, F. (1984) The Chemistry of Pyrolysis and Combustion. In: The chemistry of solid wood. Ed. Rowell, R.M. American Chemical Society, Washington, DC, pp. 489–529.Google Scholar

  • Sharma, N.K., Verma, C.S., Chariar, V.M., Prasad, R. (2015) Eco-friendly flame-retardant treatments for cellulosic green building materials. Indoor Built Environ. 24:422–432.CrossrefWeb of ScienceGoogle Scholar

  • Subasri, R., Näfe, H. (2008) Phase evolution on heat treatment of sodium silicate water glass. J. Non-Cryst. Solids 354:896–900.Web of ScienceCrossrefGoogle Scholar

  • Sweet, M.S. (1993) Fire performance of wood: test methods and fire retardant treatments. In: Recent advances in flame retardancy of polymeric Materials. Ed. Zaikov, G.E. Business Communications Co., Stamford, CT. pp. 36–43.Google Scholar

  • Terzi, E., Kartal, S.N., White, R.H., Shinoda, K., Imamura, Y. (2011) Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. Eur. J. Wood Wood Prod. 69:41–51.CrossrefWeb of ScienceGoogle Scholar

  • Tyner, H.D. (1941) Fire-extinguishing effectiveness of chemicals in water solution. Ind. Eng. Chem. 33:60–65.CrossrefGoogle Scholar

  • White, R.H., Dietenberger, M.A. (2004) Cone calorimeter evaluation of wood products. In 15th Annual BCC Conference on Flame Retardancy. Ed. Lewin, M. Business Communications Co., Stamford, CT. pp. 331–342.Google Scholar

  • White, R.H., Dietenberger, M.A. (2010) Fire safety of wood construction. In: Wood Handbook – Wood as an Engineering Material. Forest Products Laboratory, U.S. Department of Agriculture Forest Service, Madison, WI. pp. 410–431.Google Scholar

  • Winandy, J.E. (2013) State of the art paper: effects of fire-retardant treatments on chemistry and engineering properties of wood. Wood Fiber Sci. 45:131–148.Google Scholar

  • Xiao, Z., Xu, J., Mai, C., Militz, H., Wang, Q., Xie, Y. (2016) Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica. Holzforschung 70:1165–1173.Web of ScienceGoogle Scholar

About the article

Received: 2019-02-28

Accepted: 2019-08-30

Published Online: 2019-09-24


Citation Information: Holzforschung, 20190059, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0059.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in