Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Ahead of print


From hollow lignin microsphere preparation to simultaneous preparation of urea encapsulation for controlled release using industrial kraft lignin via slow and exhaustive acetone-water evaporation

Miao Wang
  • School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yadong ZhaoORCID iD: https://orcid.org/0000-0001-8208-4938 / Jiebing Li
  • Corresponding author
  • KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
  • RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-17 | DOI: https://doi.org/10.1515/hf-2019-0062


Lignin nano/microparticles have recently attracted growing interest for various value-additive applications of lignin, especially encapsulation. In this study, in order to establish a highly efficient and highly productive preparation process to effectively utilize technical lignin, a brand-new, slow and exhaustive solution evaporation process following a simple, self-assembly principle was developed using industrial softwood kraft lignin (SKL) from a starting acetone-water (80/20, v/v) solution to recover 100% of the lignin as homogeneous and well-shaped microspheres. The prepared microspheres had a typical average diameter of 0.81 ± 0.15 μm and were hollow with very thin shells (of nanoscale thickness). Based on this developed technique, encapsulation of urea by these lignin microspheres was directly achieved using the same process as hollow lignin microspheres with urea attached to the outside and entrapped inside of the wall. Two distinct urea release rates were observed for the urea-encapsulated microspheres: a fast release of the urea outside the shell wall and a slow (controlled) release of the urea inside the shell wall. The encapsulation efficiency was as high as 46% of the trapped urea as encapsulated inside the lignin microspheres. The slow and exhaustive solution evaporation procedure reported here is a simple and straightforward method for the valorization of industrial kraft lignin as hollow microspheres with controllable, homogeneous and desired morphologies, and especially for the direct preparation of lignin-based encapsulating fertilizers for controlled release.

Keywords: controlled release; encapsulation; kraft lignin; microspheres; solution evaporation; urea


  • Boeriu, C.G., Fitigau, F., Gosselink, R.J.A., Frissen, A.E., Stoutjesdijk, J.H., Peter, F. (2014) Fractionation of five technical lignins by selective extraction in green solvents and characterization of isolated fractions. Ind. Crops Prod. 62:481–490.CrossrefGoogle Scholar

  • Casas, A., Alonso, M.V., Oliet, M., Rojo, E., Rodríguez, F. (2012) FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids. J. Chem. Technol. Biotechnol. 87:472–480.CrossrefWeb of ScienceGoogle Scholar

  • Castro, D. (1998) Controlled release urea product, method for its production and use of said product as feed supplement, WO 98/27830.Google Scholar

  • Deng, Y., Wu, Y., Qian, Y., Ouyang, X., Yang, D., Qiu, X. (2010) Adsorption and desorption behaviors of lignosulfonate during the self-assembly of multilayers. BioResources 5: 1178–1196.Google Scholar

  • Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H., Qiu, X. (2011) Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules 12:1116–1125.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Deng, Y., Feng, X., Yang, D., Yi, C., Qiu, X. (2012) Pi-pi stacking of the aromatic groups in lignosulfonates. BioResources 7:1145–1156.Google Scholar

  • Gupta, A.K., Mohanty, S., Nayak, S.K. (2015) Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly (trimethylene terephthalate) hybrid nanocomposites. RSC Adv. 5:56028–56036.CrossrefWeb of ScienceGoogle Scholar

  • Jiao, G.-J., Xu, Q., Cao, S.-L., Peng, P., She, D. (2018) Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/ urea-formaldehyde polymers. BioResources 13:1711–1728.Web of ScienceGoogle Scholar

  • Li, H., Deng, Y., Liu, B., Ren, Y., Liang, J., Qian, Y., Qiu, X., Li, C., Zheng, D. (2016a) Preparation of nanocapsules via the self-assembly of kraft lignin: a totally green process with renewable resources. ACS Sustain. Chem. Eng. 4:1946–1953.CrossrefWeb of ScienceGoogle Scholar

  • Li, H., Deng, Y., Wu, H., Ren, Y., Qiu, X., Zheng, D., Li, C. (2016b) Self-assembly of kraft lignin into nanospheres in dioxane-water mixtures. Holzforschung 70:725–731.Web of ScienceGoogle Scholar

  • Li, J., Wang, M., She, D., Zhao, Y. (2017a) Structural functionalization of industrial softwood kraft lignin for simple dip-coating of urea as highly efficient nitrogen fertilizer. Ind. Crops Prod. 109:255–265.CrossrefWeb of ScienceGoogle Scholar

  • Li, Y., Zhou, M., Pang, Y., Qiu, X. (2017b) Lignin-based microsphere: preparation and performance on encapsulating the pesticide avermectin. ACS Sustain. Chem. Eng. 5:3321–3328.CrossrefWeb of ScienceGoogle Scholar

  • Lievonen, M., Valle-Delgado, J.J., Mattinen, M.-L., Hult, E.-L., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setl, H., Sterberg, M. (2016) A simple process for lignin nanoparticle preparation. Green Chem. 18:1416–1422.CrossrefWeb of ScienceGoogle Scholar

  • Lu, Q., Zhu, M., Zu, Y., Liu, W., Yang, L., Zhang, Y., Zhao, X., Zhang, X., Zhang, X., Li, W. (2012) Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin. Food Chem. 135:63–67.CrossrefWeb of ScienceGoogle Scholar

  • Ma, Q., Chen, L., Wang, R., Yang, R., Zhu, J.Y. (2018) Direct production of lignin nanoparticles (LNPs) from wood using p-toluenesulfonic acid in an aqueous system at 80°C: characterization of LNP morphology, size, and surface charge. Holzforschung 72:933–942.Web of ScienceCrossrefGoogle Scholar

  • Mora-Huertas, C.E., Fessi, H., Elaissari, A. (2010) Polymer-based nanocapsules for drug delivery. Inter. J. Pharm. 385:113–142.CrossrefGoogle Scholar

  • Mora-Huertas, C., Couenne, F., Fessi, H., Elaissari, A. (2012a) Electrokinetic properties of poly-ε-caprolactone-based nanoparticles prepared by nanoprecipitation and emulsification-diffusion methods: a comparative study. J. Nanoparticle Res. 14:1–15.Web of ScienceGoogle Scholar

  • Mora-Huertas, C.E., Garrigues, O., Fessi, H., Elaissari, A. (2012b) Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: comparative study. Eur. J. Pharm. Biopharm. 80:235–239.CrossrefWeb of ScienceGoogle Scholar

  • Mulder, W.J., Gosselink, R.J.A., Vingerhoeds, M.H., Harmsen, P.F.H., Eastham, D. (2011) Lignin based controlled release coatings. Ind. Crops Prod. 34:915–920.Web of ScienceCrossrefGoogle Scholar

  • Öhman, F., Theliander, H., Norgren, M., Tomani, P., Axegård, P. (2006) Method for separating lignin from a lignin containing liquid/slurry, WO 2006/038863 A1.Google Scholar

  • Qian, Y., Deng, Y., Qiu, X., Li, H., Yang, D. (2014) Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 16:2156–2163.CrossrefWeb of ScienceGoogle Scholar

  • Qian, Y., Zhong, X., Li, Y., Qiu, X. (2017) Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind. Crops Prod. 101:54–60.Web of ScienceCrossrefGoogle Scholar

  • Salentinig, S., Schubert, M. (2017) Softwood lignin self-assembly for nanomaterial design. Biomacromolecules 18:2649–2653.Web of ScienceCrossrefPubMedGoogle Scholar

  • Shaviv, A. (2001) Advances in controlled-release fertilizers. Adv Agron. 71:1–49.CrossrefGoogle Scholar

  • Shaviv, A., Raban, S., Zaidel, E. (2003) Modeling controlled nutrient release from polymer coated fertilizers: diffusion release from single granules. Environ. Sci. Technol. 37:2251–2256.CrossrefPubMedGoogle Scholar

  • Stark, W.J., Stoessel, P.R., Wohlleben, W., Hafner, A. (2015) Industrial applications of nanoparticles. Chem. Soc. Rev. 44:5793–5805.Web of SciencePubMedCrossrefGoogle Scholar

  • Tortora, M., Cavalieri, F., Mosesso, P., Ciaffardini, F., Melone, F., Crestini, C. (2014) Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules. 15:1634–1643.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Wang, J., Li, Y., Qiu, X., Liu, D., Yang, D., Liu, W., Qian, Y. (2017a) Dissolution of lignin in green urea aqueous solution. Appl. Surf. Sci. 425:736–741.Web of ScienceCrossrefGoogle Scholar

  • Wang, M., Sjoholm, E., Li, J. (2017b) Fast and reliable quantification of lignin reactivity via reaction with dimethylamine and formaldehyde (Mannich reaction). Holzforschung 71:27.Web of ScienceGoogle Scholar

  • Wang, M., Zhao, Y., Li, J. (2018) Demethylation and other modifications of industrial softwood kraft lignin by laccase-mediators. Holzforschung 72:357–365.CrossrefWeb of ScienceGoogle Scholar

  • Wikipedia. (2017) Acetone (data page). accessed June 8, 2017. Available from: https://en.wikipedia.org/wiki/Acetone_(data_page) – Spectral_data.

  • Xiong, F., Han, Y., Wang, S., Li, G., Qin, T., Chen, Y., Chu, F. (2017) Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain. Chem. Eng. 5:2273–2281.CrossrefWeb of ScienceGoogle Scholar

  • Yamamoto, C.F., Pereira, E.I., Mattoso, L.H.C., Matsunaka, T., Ribeiro, C. (2016) Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chem. Eng. J. 287:390–397.Web of ScienceCrossrefGoogle Scholar

  • Yearla, S.R., Padmasree, K. (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J. Exp. Nanosci. 11:289–302.Web of ScienceCrossrefGoogle Scholar

  • Zhao, W., Simmons, B., Singh, S., Ragauskas, A., Cheng, G. (2016) From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem. 18:5693–5700.CrossrefWeb of ScienceGoogle Scholar

  • Zikeli, F., Vinciguerra, V., Taddei, A.R., D’annibale, A., Romagnoli, M., Scarascia Mugnozza, G. (2018) Isolation and characterization of lignin from beech wood and chestnut sawdust for the preparation of lignin nanoparticles (LNPs) from wood industry side-streams. Holzforschung 72:961–972.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2019-03-01

Accepted: 2019-07-11

Published Online: 2019-08-17

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20190062, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0062.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in