Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Evaluation of moisture diffusion in lignocellulosic biomass in steady and unsteady states by a dynamic vapor sorption apparatus

Tianyi ZhanORCID iD: https://orcid.org/0000-0002-2120-6062 / Fengze Sun
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao Lv
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qian He
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xuan Wang
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kang XuORCID iD: https://orcid.org/0000-0002-8814-2868 / Yaoli Zhang
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liping Cai
  • College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
  • Mechanical and Energy Engineering Department, University of North Texas, Denton, TX 76201, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-07-20 | DOI: https://doi.org/10.1515/hf-2019-0063

Abstract

To examine the methodology for determining the moisture diffusion behavior of lignocellulosic biomass in steady and unsteady states (two stages of a sorption isotherm), the diffusion coefficients in the steady and unsteady states (DSS and DUS) were investigated over a range of relative humidity (RH) from 10 to 90% using a dynamic vapor sorption (DVS) apparatus and a specifically designed cell kit. Thin samples with a thickness of 50 μm were prepared from three lignocellulosic biomasses, i.e. poplar, Chinese fir and moso bamboo. Based on Fick’s first and second laws, DSS and DUS were determined. An increase in DSS or DUS was observed with increasing equilibrium moisture content (EMC) or transient status, regardless of the lignocellulosic biomass species. The moisture-dependent DSS of poplar, Chinese fir and moso bamboo was similar to values previously reported. Chinese fir and moso bamboo exhibited the highest and the lowest DSS values, respectively, when the same EMCs were achieved. The results of this study revealed that DSS and DUS of lignocellulosic biomass (even with limited dimensions) could be determined during a sorption isotherm in a wide humidity range. Furthermore, the results are helpful for simulating moisture transport behaviors in the fields of drying, paper packaging and wooden building maintenance.

Keywords: dynamic vapor sorption (DVS); Fick’s law; lignocellulosic; moisture content; moisture diffusion; steady state; unsteady state

References

  • Altgen, M., Militz, H. (2016) Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system. Holzforschung 70:971–979.Web of ScienceGoogle Scholar

  • Avramidis, S. (2007) Bound water migration in wood. Eds. Perré, P. A.R.BO.LOR, Nancy, pp. 105–124.Google Scholar

  • Avramidis, S., Englezos, P., Papathanasiou, T. (1992) Dynamic nonisothermal transport in hygroscopic porous media: moisture diffusion in wood. AIChE J. 38:1279–1287.CrossrefGoogle Scholar

  • Avramidis, S., Hatzikiriakos, S.G., Siau, J.F. (1994) An irreversible thermodynamics model for unsteady-state nonisothermal moisture diffusion in wood. Wood Sci. Technol. 28:S349–S358.CrossrefGoogle Scholar

  • Bao, F.C., Hu, R. (1990) Studies of the fluid permeability and diffusion of the paulownia wood. Sci Silvae Sinicae 26:239–246.Google Scholar

  • Beck, G., Strohbusch, S., Larnøy, E., Militz, H., Hill, C. (2018) Accessibility of hydroxyl groups in anhydride modified wood as measured by deuterium exchange and saponification. Holzforschung 72:17–23.Web of ScienceGoogle Scholar

  • Bergman, T.L., Incropera, F.P., DeWitt, D.P., Lavine, A.S. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Hoboken. 2011.Google Scholar

  • Bedane, A.H., Eić, M., Farmahini-Farahani, M., Xiao, H. (2016) Theoretical modelling of water vapor transport in cellulose-based materials. Cellulose 23:1537–1552.CrossrefGoogle Scholar

  • Boardman, C.R., Glass, S.V. (2015) Moisture transfer through the membrane of a cross-flow energy recovery ventilator: measurement and simple data-driven modeling. J. Build Phys. 38:389–418.Web of ScienceCrossrefGoogle Scholar

  • Cai, L. (2005) Determination of diffusion coefficients for sub-alpine fir. Wood Sci. Technol. 39:153–162.CrossrefGoogle Scholar

  • Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. (2013) A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 47:141–161.Web of ScienceCrossrefGoogle Scholar

  • Espert, A., Vilaplana, F., Karlsson, S. (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A Appl. Sci. Manuf. 35:1267–1276.CrossrefGoogle Scholar

  • Glass, S.V., Boardman, C.R., Thybring, E.E., Zelinka, S.L. (2018) Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Sci. Technol. 52:909–927.Web of ScienceCrossrefGoogle Scholar

  • Hailwood, A., Horrobin, S. (1946) Absorption of water by polymers: analysis in terms of a simple model. Trans. Faraday Soc. 42:B084–B092.CrossrefGoogle Scholar

  • Hill, C.A.S., Norton, A.J., Newman, G. (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44:497–514.Web of ScienceCrossrefGoogle Scholar

  • Himmel, S., Mai, C. (2016) Water vapour sorption of wood modified by acetylation and formalisation – analysed by a sorption kinetics model and thermodynamic considerations. Holzforschung 70:203–213.Web of ScienceCrossrefGoogle Scholar

  • ISO standard (2016) 12572, Hygrothermal performance of building materials and products – determination of water vapour transmission properties – cup method.Google Scholar

  • Kang, W., Kang, C-W., Chung, W.Y., Eom, C-D., Yeo, H. (2008) The effect of openings on combined bound water and water vapor diffusion in wood. J. Wood Sci. 54:343–348.CrossrefWeb of ScienceGoogle Scholar

  • Konopka, D., Bachitar, E.V., Niemz, P., Kaliske, M. (2017) Experimental and numerical analysis of moisture transport in walnut and cherry wood in radial and tangential materials directions. BioResources 12:8920–8936.Google Scholar

  • Krabbenhoft, K., Damkilde, L. (2004) A model for non-Fickian moisture transfer in wood. Mater. Struct. 37:615–622.CrossrefGoogle Scholar

  • Kulasinski, K., Keten, S., Churakov, S.V. (2014) Molecular mechanism of moisture-induced transition in amorphous cellulose. ACS Macro. Lett. 3:1037–1040.Web of ScienceCrossrefGoogle Scholar

  • Kupczak, A., Bratasz, Ł., Kryściak-Czerwenka, J., Kozłowski, R. (2018) Moisture sorption and diffusion in historical cellulose-based materials. Cellulose 25:2873–2884.CrossrefWeb of ScienceGoogle Scholar

  • Liu, J., Yu, J., Wang, X., Li, Y. (2018) Heat and mass transfer multi-scale unit characterization model in the drying process of Pinus sylvestris. J. For. Eng. 3:26–31.Google Scholar

  • Massoquete, A., Lavrykov, S.A., Ramarao, B.V., Goel, A., Ramaswamy, S. (2005) The effect of pulp refining on lateral and transverse moisture diffusion in paper. Tappi J. 4:3–8.Google Scholar

  • Nair, S.S., Zhu, J.Y., Deng, Y., Ragauskas, A.J. (2014) High performance green barriers based on nanocellulose. Sustain. Chem. Process 2:23.CrossrefGoogle Scholar

  • Olek, W., Perré, P., Weres, J. (2005) Inverse analysis of the transient bound water diffusion in wood. Holzforschung 59:38–45.Google Scholar

  • Pasztory, Z., Horvath, T., Glass, S.V., Zelinka, S.L. (2015) Thermal insulation system made of wood and paper for use in residential construction. Forest Prod. J. 65:352–357.Web of ScienceCrossrefGoogle Scholar

  • Perré, P. (2010) Multiscale modeling of drying as a powerful extension of the macroscopic approach: application to solid wood and biomass processing. Dry Technol. 28:944–959.CrossrefWeb of ScienceGoogle Scholar

  • Rautkari, L., Hill, C.A.S., Curling, S. (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J. Mater. Sci. 48:6352–6356.CrossrefWeb of ScienceGoogle Scholar

  • Siau, J.F. Transport Processes in Wood. Springer, Berlin, 2012.Google Scholar

  • Simón, C., Esteban, L.G., de Palacios, P., Fernández, F.G., García-Iruela, A. (2017) Sorption/desorption hysteresis revisited. Sorption properties of Pinus pinea L. analysed by the parallel exponential kinetics and Kelvin-Voigt models. Holzforschung 71:171–177.Google Scholar

  • Shi, S.Q. (2007) Diffusion model based on Fick’s second law for the moisture absorption process in wood fiber-based composites: is it suitable or not? Wood Sci. Technol. 41:645–658.CrossrefWeb of ScienceGoogle Scholar

  • Skaar, C. Wood-Water Relations. Springer, Berlin, 1988.Google Scholar

  • Sonderegger, W., Vecellio, M., Zwicker, P., Niemz, P. (2011) Combined bound water and water vapour diffusion of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 65:819–828.Web of ScienceGoogle Scholar

  • Stamm, A.J. (1956) Diffusion of water into uncoated cellophane I. From rates of water vapour adsorption and liquid water absorption. J. Phys. Chem. 60:76–82.CrossrefGoogle Scholar

  • Stamm, A.J. (1960) Combined bound-water and water-vapour diffusion into Sitka Spruce. For. Prod. J. 10:644–648.Google Scholar

  • Thybring, E.E., Thygesen, L.G., Burgert, I. (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384.CrossrefWeb of ScienceGoogle Scholar

  • Wadsö, L. (1993) Measurements of water vapour sorption in wood. Wood Sci. Technol. 28:59–65.Google Scholar

  • Wadsö, L. (1994) Describing non-Fickian water-vapour sorption in wood. J. Mater. Sci. 29:2367–2372.CrossrefGoogle Scholar

  • Wadsö, L. (2007) Unsteady-state water vapor adsorption in wood: an experimental study. Wood Fiber Sci. 26:36–50.Google Scholar

  • Willems, W. (2014) The water vapor sorption mechanism and its hysteresis in wood: the water/void mixture postulate. Wood Sci. Technol. 48:499–518.CrossrefWeb of ScienceGoogle Scholar

  • Willems, W. (2015) A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69:67–75.Web of ScienceGoogle Scholar

  • Willems, W. (2017) Thermally limited wood moisture changes: relevance for dynamic vapour sorption experiments. Wood Sci. Technol. 51:751–770.Web of ScienceCrossrefGoogle Scholar

  • Yu, X., Schmidt, A.R., Bello-Perez, L.A., Schmidt, S.J. (2008) Determination of the bulk moisture diffusion coefficient for corn starch using an automated water sorption instrument. J. Agr. Food Chem. 56:50–58.Web of ScienceCrossrefGoogle Scholar

  • Zelinka, S.L., Glass, S.V., Thybring, E.E. (2018) Myth versus reality: do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Sci. Technol. 52: 1701–1706.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2019-03-03

Accepted: 2019-06-07

Published Online: 2019-07-20


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was financially supported by the National Key Research and Development Program of China (2017YFD0600202), the National Natural Science Foundation of China (no. 31700487), the Natural Science Foundation of Jiangsu Province (CN) (no. BK20170926), the Practice Innovation Training Program for College Students in Jiangsu Province (201810298054Z) and the Priority Academic Program Development of Jiangsu Higher Education Insitutions (PAPD).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190063, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0063.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in