Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Larch-derived hierarchical nitrogen-doped carbon with echinus-like architecture for supercapacitor applications

Honglei Chen
  • State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P.R. China
  • Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lei Sha
  • State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yujie Zhang
  • State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shoujuan Wang
  • State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fangong Kong
  • State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Falk Muench
  • Technische Universität Darmstadt, Department of Materials and Earth Sciences, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xin Zhao
  • Corresponding author
  • State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-11-13 | DOI: https://doi.org/10.1515/hf-2019-0074

Abstract

Echinus-like nitrogen-doped carbon with a hierarchical porous structure was synthesized from green larch waste and urea via liquid in situ doping and high-temperature carbonization. Benefitting from a large specific surface area (649 m2 g−1) and hierarchical porous structure, the nitrogen-doped carbon exhibited excellent electrochemical performance for supercapacitors. Remarkably, the echinus-like nitrogen-doped carbon achieved a high specific capacitance of 340 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte as well as a good performance rate and stability (with a capacitance retention of 98% after 5000 cycles). This capacitance was almost 1.5 times higher than that of undoped carbon due to the contribution of the pseudocapacitance from the nitrogen doping. Larch sawdust is a promising carbon source for fabricating inexpensive, sustainable and high-performance supercapacitor materials.

Keywords: echinus-like carbon; larch liquefaction; liquid in situ doping; supercapacitors

References

  • Arbab, A.A., Memon, A.A., Sahito, I.A., Mengal, N., Sun, K.C., Ali, M., Jeong, S.H. (2018) An evidence for an organic N-doped multiwall carbon nanotube heterostructure and its superior electrocatalytic properties for promising dye-sensitized solar cells. J. Mater. Chem. A 6:8307–8322.CrossrefWeb of ScienceGoogle Scholar

  • Bhattacharjya, D., Kim, M.S., Yu, J.S. (2013) High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244:799–805.CrossrefWeb of ScienceGoogle Scholar

  • Deng, Y., Xie, Y., Zou, K.X., Ji, X.L. (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A 4:1144–1173.Web of ScienceCrossrefGoogle Scholar

  • Dobele, G., Vervikishko, D., Volperts, A., Bogdanovich, N., Shkolnikov, E. (2013) Characterization of the pore structure of nanoporous activated carbons produced from wood waste. Holzforschung 67:587–594.CrossrefWeb of ScienceGoogle Scholar

  • Dobele, G., Volperts, A., Telysheva, G., Zhurinsh, A., Vervikishko, D., Sametov, A., Shkolnikov, E., Ozolinsh, J. (2015) Wood-based activated carbons for supercapacitors with organic electrolyte. Holzforschung 69:777–784.Web of ScienceCrossrefGoogle Scholar

  • Dobele, G., Volperts, A., Zhurinsh, A., Vervikishko, D., Shkolnikov, E., Ozolinsh, J. (2017) Wood based activated carbons for electrodes with sulfuric acid electrolyte. Holzforschung 71:591–598.Web of ScienceCrossrefGoogle Scholar

  • Fan, X., Yu, C., Yang, J., Ling, Z., Qiu, J. (2014) Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70:130–141.CrossrefWeb of ScienceGoogle Scholar

  • Gu, X., Pang, Z., Wei, Y. (2017) On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. Carbon 119:278–286.Web of ScienceCrossrefGoogle Scholar

  • Hao, L., Li, X., Zhi, L. (2013) Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25:3899–3904.Web of SciencePubMedCrossrefGoogle Scholar

  • He, X., Yu, H., Fan, L., Yu, M., Zheng, M. (2017) Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors. Mater. Lett. 195:31–33.CrossrefWeb of ScienceGoogle Scholar

  • Huang, Y.X., Zhao, G.J. (2015) Preparation and characterization of activated carbon fibers from liquefied wood by KOH activation. Holzforschung 70:195–202.Web of ScienceGoogle Scholar

  • Huang, Y.X., Yu, W.J., Zhao, G.J. (2017) Activated carbon fiber from liquefied wood and polyvinyl butyral as an additive for production of flexible all-carbon yarn supercapacitors. Holzforschung 72:367–374.Web of ScienceGoogle Scholar

  • Huang, C., Puziy, A.M., Poddubnaya, O.I., Jurcakova, D.H., Gawdzik, B. (2018) Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors. Electrochim. Acta 270:339–351.CrossrefWeb of ScienceGoogle Scholar

  • Jain, A., Balasubramanian, R. (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. 283:789–805.Web of ScienceCrossrefGoogle Scholar

  • Jiang, W., Kumar, A., Adamopoulos, S. (2019) Liquefaction of lignocellulosic materials and its applications in wood adhesives: a review. Ind. Crops Prod. 124:325–342.Web of ScienceGoogle Scholar

  • Jin, H., Hu, J., Wu, S., Wang, X., Zhang, H., Xu, H., Lian, K. (2018) Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. J. Power Sources 384:270–277.Web of ScienceCrossrefGoogle Scholar

  • Kim, D.K., Kim, N.D., Park, S.K., Seong, K.D., Hwang, M., You, N.H., Piao, Y.Z. (2018) Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors. J. Power Sources 380:55–63.CrossrefWeb of ScienceGoogle Scholar

  • Kruner, B., Schreiber, A., Tolosa, A., Quade, A., Badaczewski, F., Pfaff, T., Smarsly, B.M., Presser, V. (2018) Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon 132:220–231.CrossrefWeb of ScienceGoogle Scholar

  • Li, Y., Zhang, Y.Y., Wanru, D., Yue, J.Q., Xu, M., Shi, S.Q. (2018) Preparation and properties of pulp fibers treated with zinc oxide nanoparticles by in situ chemosynthesis. Holzforschung 72:923–931.CrossrefWeb of ScienceGoogle Scholar

  • Lin, G., Ma, R., Zhou, Y., Liu, Q., Dong, X., Wang, J. (2018) KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim. Acta 261:49–57.Web of ScienceCrossrefGoogle Scholar

  • Liu, W.J., Wang, X.M., Zhang, M.H. (2017) Preparation of highly mesoporous wood-derived activated carbon fiber and the mechanism of its porosity development. Holzforschung 71:363–371.Web of ScienceCrossrefGoogle Scholar

  • Ma, X., Gan, L., Liu, M., Tripathi, P.K., Chen, L. (2014) Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes. J. Mater. Chem. A 2:8407–8415.CrossrefWeb of ScienceGoogle Scholar

  • Ma, X., Zhou, Y., Chen, M., Wu, L. (2017) Synthesis of olive-like nitrogen-doped carbon with embedded Ge nanoparticles for ultrahigh stable lithium battery anodes. Small 13:201700403.PubMedWeb of ScienceGoogle Scholar

  • Sevilla, M., Ferrero, G.A., Diez, N., Fuertes, A.B. (2018) One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 131:193–200.Web of ScienceCrossrefGoogle Scholar

  • Stirling, R., Bicho, P., Daniels, B., Morris, P.I. (2010) Kraft pulping of wood treated with carbon-based preservatives. Holzforschung 64:285–288.Web of ScienceGoogle Scholar

  • Wang, J.G., Liu, H., Sun, H., Hua, W., Wang, H., Liu, X., Wei, B. (2018) One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127:85–92.Web of ScienceCrossrefGoogle Scholar

  • Yang, W., Hou, L., Xu, X., Li, Z., Ma, X., Yang, F., Li, Y. (2018) Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon 130:325–332.CrossrefWeb of ScienceGoogle Scholar

  • You, X.Y., Duan, J., Koda, K., Yamada, T., Uraki, Y. (2015) Preparation of electrode for electric double layer capacitors from electrospun lignin fibers. Holzforschung 69:1097–1106.CrossrefGoogle Scholar

  • Zeng, D., Dou, Y.P., Li, M., Zhou, M., Li, H.M., Jiang, K., Yang, F., Peng, J.J. (2018) Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J. Mater. Sci. 53: 8372–8384.Web of ScienceCrossrefGoogle Scholar

  • Zhang, W., Xu, C., Ma, C., Li, G., Wang, Y., Zhang, K., Li, F., Liu, C., Cheng, H., Du, Y., Tang, N., Ren, W. (2017) Nitrogen-superdoped 3D Graphene networks for high-performance supercapacitors. Adv. Mater. 29:201701677.Web of ScienceGoogle Scholar

  • Zhao, X., Li, W., Liu, S. (2014) Ordered mesoporous carbon membrane prepared from liquefied Larch by a soft method. Mater. Lett. 126:174–177.Web of ScienceCrossrefGoogle Scholar

  • Zhao, X., Li, W., Liu, S. (2015) Facile fabrication of hollow and honeycomb-like carbon spheres from liquefied Larch sawdust via ultrasonic spray pyrolysis. Mater. Lett. 157:135–138.CrossrefWeb of ScienceGoogle Scholar

  • Zhao, X., Li, W., Chen, H., Wang, S., Kong, F., Liu, S. (2017a) Facile control of the porous structure of Larch-derived mesoporous carbons via self-assembly for supercapacitors. Materials 10:1330.Web of ScienceCrossrefGoogle Scholar

  • Zhao, Y., Zhang, X.M., He, Y., Liu, N., Tan, T., Liang, C. (2017b) Biomass derived nitrogen-doped highly porous carbon material with a hierarchical porous structure for high-performance lithium/sulfur batteries. Materials 10:1158.CrossrefWeb of ScienceGoogle Scholar

  • Zhao, X., Li, W., Kong, F.G., Chen, H.L., Wang, Z.Q., Liu, S.X., Jin, C.D. (2018) Carbon spheres derived from biomass residue via ultrasonic spray pyrolysis for supercapacitors. Mater. Chem. Phys. 219:461–467.CrossrefWeb of ScienceGoogle Scholar

  • Zhao, X., Chen, H., Kong, F., Zhang, Y., Wang, S., Liu, S., Lucia, L., Fatehi, P., Pang, H. (2019) Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem. Eng. J. 364:226–243.Web of ScienceCrossrefGoogle Scholar

  • Zou, K., Deng, Y., Chen, J., Qian, Y., Yang, Y., Li, Y., Chen, G. (2018) Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378:579–588.CrossrefWeb of ScienceGoogle Scholar

  • Zuo, S., Chen, K., Li, W., Li, X., Kong, Y., Yao, C., Fu, Y. (2018) Preparation of 3D interconnected hierarchical porous N-doped carbon nanotubes. Carbon 129:199–206.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2019-03-13

Accepted: 2019-10-02

Published Online: 2019-11-13


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 31800499

Award identifier / Grant number: 31600472

Award identifier / Grant number: 31570566

Funding Source: Natural Science Foundation of Shandong Province

Award identifier / Grant number: ZR2017LEM009

Award identifier / Grant number: ZR2016YL007

Funding Source: Shandong Academy of Sciences

Award identifier / Grant number: 2017BSH2010

Funding Source: Key Research and Development Program of Shandong Province

Award identifier / Grant number: 2017GSF17130

Funding Source: Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control of China

Award identifier / Grant number: KF201813-4

Award identifier / Grant number: KF201717

Funding Source: Key Laboratory of Pulp and Paper Science and Technology of the Ministry of Education/Shandong Province of China

Award identifier / Grant number: ZR201707

Award identifier / Grant number: ZR201710

The present work was financially supported by the National Natural Science Foundation of China (grant nos. 31800499, 31600472, 31570566), the Natural Science Foundation of Shandong Province, Funder Id: http://dx.doi.org/10.13039/501100007129 (ZR2017LEM009, ZR2016YL007), the Joint Research Fund for young doctor of Qilu University of Technology (Shandong Academy of Sciences) (no. 2017BSH2010), the Key Research and Development Program of Shandong Province (no. 2017GSF17130), the Foundation of Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control of China (KF201813-4, KF201717), and the Foundation of Key Laboratory of Pulp and Paper Science and Technology of the Ministry of Education/Shandong Province of China (nos. ZR201707, ZR201710).


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Conflict of interest statement: The authors declare no conflict of interests.


Citation Information: Holzforschung, 20190074, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0074.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in