Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Effect of pulp fibers on the surface softness component of hygiene paper

Jung Yoon Park
  • Department of Forest Product and Biotechnology, Kookmin University, 77 Jeongneong-ro, Seoungbuk-gu, Seoul 02707, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lili Melani
  • Department of Forest Product and Biotechnology, Kookmin University, 77 Jeongneong-ro, Seoungbuk-gu, Seoul 02707, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hyeonggyu Lee
  • Department of Forest Product and Biotechnology, Kookmin University, 77 Jeongneong-ro, Seoungbuk-gu, Seoul 02707, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hyoung Jin Kim
  • Corresponding author
  • Department of Forest Product and Biotechnology, Kookmin University, 77 Jeongneong-ro, Seoungbuk-gu, Seoul 02707, Republic of Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-11-15 | DOI: https://doi.org/10.1515/hf-2019-0080

Abstract

This study analyzed the effect that pulp fibers have on the surface softness component of hygiene paper. The surface softness component has more of an influence on the evaluation of subjective softness results than the bulk softness component. Using the surface softness measurement technique, this study aimed to evaluate the effect that fibers have on the softness of hygiene paper substrate via objective numerical values to measure the surface softness component of hand sheets composed of various pulp species. The results indicate that coarseness effects had the largest effect on softness among the various fiber characteristics, such as average fiber length, width and coarseness. As fiber coarseness increased, a rough surface formed, which resulted in an increase in the mean deviation from the average friction (MMD). Nonwood fibers had long fiber length and low coarseness, which enables the production of hygiene paper with high strength and softness. This study hopefully could lead to the development of various process technologies that may improve the softness of hygiene paper products.

Keywords: fiber materials; hygiene paper; mean deviation from the average friction (MMD); softness; surface softness

References

  • Ashori, A. (2006) Nonwood fibers – a potential source of raw material in papermaking. Polym. Plast. Technol. Eng. 45: 1133–1136.CrossrefGoogle Scholar

  • Ayadi, R., Hanana, M., Mzid, R., Hamrouni, L., Khouja, M.l., Salhi Hanachi, A. (2017) Hibiscus cannabinus L. – Kenaf : a review paper. J. Nat. Fibers 14:466–484.Web of ScienceGoogle Scholar

  • Bajpai, P. Recycling and Deinking of Recovered Paper. Elsevier, London, 2014.Google Scholar

  • Batalha, L.A.R., Colodette, J.L., Gomide, J.L., Barbosa, L.C.A., Maltha, C.R.A., Gomes, F.J.B. (2012) Dissolving pulp production from bamboo. BioResources 7:640–651.Google Scholar

  • Egawa, M., Oguri, M., Hirao, T., Takahashi, M., Miyakawa, M. (2002) The evaluation of skin friction using a frictional feel analyzer. Skin Res. Technol. 8:41–51.CrossrefPubMedGoogle Scholar

  • Gallay, W. (1973) Textural properties of paper: measurements and fundamental relationship, in the fundamental properties of paper related to its uses. Ed. Bolam, F. Technical Section, British Paper and Board Makers Association, London, 2:684–695.Google Scholar

  • Hermans, M.A., Sauer, R.D., Hossain, S.U., Litvay, J.D. (1997) Tissue products made from low coarseness fibers, U.S. Patent, H 1,672, Kimberly-Clark Corp.Google Scholar

  • Hollmark, H. (1976) The softness of household paper products and related products in the fundamental properties of paper related to its end uses. Ed. Bolam, F. Transactions of the Symposium Held, Cambridge. pp. 684–695.Google Scholar

  • Hollmark, H. (1983) Evaluation of tissue paper softness. Tappi J. 48:63–64.Google Scholar

  • Jeon, C., Ryu, J. (2010) An instance of selecting retention chemicals based on simultaneous analysis of retention, drainage and formation of RDA (retention and drainage analyzer) sheets. J. Korea TAPPI 42:7–13.Google Scholar

  • Jonoobi, M., Harun, J., Shakeri, A., Misra, M., Oksmand, K. (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639.Google Scholar

  • Khine Win, K., Ariyoshi, M., Seki, M., Okayama, T. (2012) Effect of pulping conditions on the properties of bamboo paper. Sen’i Gakkaishi 68:290–295.CrossrefGoogle Scholar

  • Ko, Y.C., Park, J.Y., Melani, L., Park, N.Y., Kim, H.J. (2018) Principles of developing physical test methods for disposable consumer products. Nord. Pulp Pap. Res. J. 34:75–87.Web of ScienceGoogle Scholar

  • Lee, T.J., Choi, D.C., Kim, M.S., Ryu, J.Y. (2015) Studies on deinking properties of recovered paper for manufacturing eco-friendly thermal recording paper. J. Korea TAPPI 47:98–105.Google Scholar

  • Lee, T.J., Lee, K.S., Lee, J.H., Ryu, J.Y. (2017) Application of the novel test machine, retention and drainage analyzer (RDA), for wet-end analysis of papermaking process (II) – vibratory RDA and selection of CaCO3 filler by simultaneous considering of multiple assessment factors. J. Korea TAPPI 49:102–108.Google Scholar

  • Lehto, J.T., Alén, R.J. (2015) Chemical pretreatments of wood chips prior to alkaline pulping – a review of pretreatment alternatives, chemical aspects of the resulting liquors, and pulping outcomes. BioResources 10:8604–8656.Google Scholar

  • Mohieldin, S.D. (2015) Pretreatment approaches in non-wood plants for pulp and paper production : a review. J. For. Prod. Ind. 3:84–88.Google Scholar

  • Mossello, A.A., Harun, J., Md Tahir, F., Resalati, H., Ibrahim, R., Shamsi, S.R.F., Mohamed, A.Z. (2010) A review of literatures related of using kenaf for pulp production (beating, fractionation, and recycled fiber). J. Mod. Appl. Sci. 4:21–29.Google Scholar

  • Mu, K.K., Seok, N.W., Hyon, P.K. (2002) Manufacture of high quality premium tissue from white ledger by bleaching, blending with virgin pulp and the addition of softeners. J. Korea TAPPI 34:30–36.Google Scholar

  • Page, D.H. (1989) The beating of chemical pulps – the action and the effects. Fundamentals Papermaking 1:1–38.Google Scholar

  • Park, J.Y., Lee, J.H., Kim, H.J., Park, J.M., Moon, B.G., Ko, Y.C. (2017) Softness evaluation of hygiene paper: linking between subjective evaluation and physical measurement. 16th Fundamental Research Symposium Held, Oxford. pp. 30–32.Google Scholar

  • Park, J.Y., Melani, L., Lee, H., Kim, H.J. (2019) Effect of chemical additives on softness components of hygiene paper. Nord. Pulp Pap. Res. J. 34:173–181.Web of ScienceCrossrefGoogle Scholar

  • Raunio, J.P., Ritala, R. (2013) Method for detecting free fiber ends in tissue paper. Meas. Sci. Technol. 24:1–6.Web of ScienceGoogle Scholar

  • Reeves, R.H., Plantikow, J.D., Smith, L.J., Oriaran, T.P., Awofeso, A.O., Worry, G.L. (1994) Soft high strength tissue using long-low coarseness hesperaloe fibers. U.S. Patent, 5,320,710, James River Corp. Virginia.Google Scholar

  • Rosen, B.G., Fall, A., Rosen, S., Farbrot, A., Bergström, P. (2014) Topographic modelling of haptic properties of tissue products. J. Phys. Conf. Ser. 483:1–6.Google Scholar

  • Schmitt, J.F., Chester, W., Smith, R. (1997) Production of soft paper products from high and low coarseness fibers, U.S. Patent 5,620,565, Kimberly-Clark Corp.Google Scholar

  • Seo, J.H., Lee, T.J., Lee, D.J., Lee, M.K., Ryu, J.Y. (2017) Evaluation of recyclability at varied blending ratios of gable top and aseptic brick carton. J. Korea Tech. Assoc. Pulp Pap. Ind. 47:123–129.Google Scholar

  • Shin, D.S., Ryu, J.Y., Shin, C.H. (1995) Studies on repulping condition and creping properties of waste milk carton. J. Korea TAPPI 27:73–82.Google Scholar

  • Sugesty, S., Kardiansyah, T., Hardiani, H. (2015) Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chem. 17:194–199.CrossrefGoogle Scholar

  • Vasconcelos, R.M., Carneiro, A., Lima, M., Silva, L.F., Seabra, E. (2013) Handle assessment of tissue paper. J. Text. Eng. 59:169–175.CrossrefGoogle Scholar

  • Vu, T.H.M., Pakkanen, H., Alén, R. (2004) Delignification of bamboo (Bambusa procera acher) Part 1. Kraft pulping and the subsequent oxygen delignification to pulp with a low kappa number. Ind. Crops Prod. 19:49–57.Google Scholar

  • Won, J.M., Kim, M. (2009) Pulping characteristics of bamboo (Bambusa procera acher) grown in Vietnam. J. Korea TAPPI 41:52–57.Google Scholar

  • Woo, Y.K., Ryu, J.Y., Kim, Y.H., Song, B.K., Cho, N.S. (2002) Application of the novel test machine, retention drainage analyzer (RDA), for wet-end analysis of papermaking process (I) – studies on formation of paper sheet molded by RDA. J. Korea TAPPI 34:1–6.Google Scholar

  • Yokura, H., Kohono, S., Iwasaki, M. (2004) Objective hand measurement of toilet paper, J. Text. Eng. 50:1–5.CrossrefGoogle Scholar

  • Zeinaly, F., Shakhes, J., Zeinali, N. (2013) Multi stage peroxide and activated peroxide bleaching of kenaf bast pulp. Carbohydr. Polym. 92:976–981.Web of ScienceCrossrefPubMedGoogle Scholar

  • Zhao, G., Lai, R., He, B., Greschik, T., Li, X. (2010) Replacement of softwood kraft pulp with ECF-bleached bamboo kraft pulp in fine paper. BioResources 5:1733–1744.Google Scholar

About the article

Received: 2019-03-25

Accepted: 2019-08-29

Published Online: 2019-11-15


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: We acknowledge financial support from the Korea Evaluation Institute of Industrial Technology, Ministry of Trade, Industry and Energy, Republic of Korea, Funder Id: http://dx.doi.org/10.13039/501100003662 (project no. 10065715).

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190080, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0080.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in