Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Ahead of print


Understanding the structural changes of lignin in poplar following steam explosion pretreatment

Huimei Wang
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhong Liu
  • Corresponding author
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lanfeng Hui
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lan Ma
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xu Zheng
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jingzhi Li
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Zhang
  • Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-30 | DOI: https://doi.org/10.1515/hf-2019-0087


To understand the modifications of lignin in the steam explosion process (209°C, 7 min), lignin samples in native poplar (LP), steam explosion solid residue (LS) and steam explosion liquid (LL) were separated and studied. The lignin samples (LP, LS and LL) were characterized and analyzed by size exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance [carbon 13 numclear magnetic resonance (13C-NMR) and heteronuclear single quantum coherence or heteronuclear single quantum correlation experiment NMR (HSQC) NMR] analysis. The results revealed that the pretreatment induced reductions in amounts of β-O-4′, β-β′, and spirodienone structure, and increases in the syringyl/guaiacyl (S/G) ratio from 1.14 (LP) to 1.70 (LS) and 1.86 (LL). The HSQC NMR spectra also gave more information about the predominance of G and S units, and only small amounts of p-hydroxyphenyl (H) units. Moreover, SEC demonstrated the depolymerization and repolymerization of lignin, which were the main reasons for the increase in the average molecular weight of LS and the decrease in average molecular weight of LL, respectively. In brief, after steam explosion treatment, the lignin structure changed, but the backbone structure was not noticeably modified.

Keywords: average molecular weight; lignin structure; NMR; size exclusion chromatography; steam explosion


  • Alonso, D.M., Bond, J.Q., Dumesic, J.A. (2010) Catalytic conversion of biomass to biofuels. Green Chem. 12:1493–1513.Web of ScienceCrossrefGoogle Scholar

  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J. (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101:4851–4861.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Avellar, B.K., Glasser, W.G. (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14:205–218.CrossrefGoogle Scholar

  • Capanema, E.A., Mikhail Yu, B., Kadla, J.F. (2010) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 53:9639–9649.Google Scholar

  • Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H., Han, S. (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160: 196–206.Web of ScienceCrossrefGoogle Scholar

  • Ding, S.Y., Liu, Y.S., Zeng, Y., Himmel, M.E., Baker, J.O., Bayer, E.A. (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338: 1055–1060.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Faix, O. (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28.CrossrefGoogle Scholar

  • Guerra, A., Filpponen, I., Lucia, L.A., Saquing, C., Baumberger, S., Argyropoulos, D.S. (2006) Toward a better understanding of the lignin isolation process from wood. J. Agric. Food Chem. 54:5939–5947.CrossrefGoogle Scholar

  • Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ibarra, D., Chávez, M.I., Rencoret, J., Del Río, J.C., Gutiérrez, A., Romero, J., Camarero, S., María Jesús, M., Jiménez-Barbero, J., Martínez, A.T. (2007) Lignin Modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, fourier transform infrared, and pyrolysis–gas chromatography/mass spectrometry study. J. Agric. Food Chem. 55:3477–3490.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Jääskeläinen, A.S., Sun, Y., Argyropoulos, D.S., Tamminen, T., Hortling, B. (2003) The effect of isolation method on the chemical structure of residual lignin. Wood Sci. Technol. 37:91–102.CrossrefGoogle Scholar

  • Kim, H., Ralph, J., Akiyama, T. (2008) Solution-state 2D NMR of ball-milled plant cellwall gels in DMSO-d6. Bioenergy Res. 1:56–66.CrossrefGoogle Scholar

  • Kumar, R., Mago, G., Balan, V., Wyman, C.E. (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100:3948–3962.CrossrefWeb of SciencePubMedGoogle Scholar

  • Li, J., Henriksson, G., Gellerstedt, G. (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98:3061–3068.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Liew, W.H., Hassim, M.H., Ng, D.K. (2014) Review of evolution, technology and sustainability assessments of biofuel production. J. Clean. Prod. 71:11–29.Web of ScienceCrossrefGoogle Scholar

  • Marchessault, R.H., Coulombe, S., Morikawa, H., Robert, D. (1982) Characterization of aspen exploded wood lignin. Can. J. Chem. 60:2372–2382.CrossrefGoogle Scholar

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673–686.CrossrefPubMedGoogle Scholar

  • Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T. (2006) The path forward for biofuels and biomaterials. Science 311:484–489.PubMedCrossrefGoogle Scholar

  • Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W. (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3:29–60.CrossrefGoogle Scholar

  • Rencoret, J., Marques, G., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Martínez, Á.T., Río, J.C.D. (2009) Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind. Crops Prod. 30:137–143.CrossrefWeb of ScienceGoogle Scholar

  • Rencoret, J., Prinsen, P., Gutiérrez, A., Martı́nez, A.T., del Rı́o, J.C. (2015) Isolation and structural characterization of the milled wood lignin, dioxane lignin, and cellulolytic lignin preparations from brewer’s spent grain. J. Agric. Food Chem. 63:603–613.Web of SciencePubMedCrossrefGoogle Scholar

  • Samuel, R., Pu, Y., Raman, B., Ragauskas, A.J. (2010) Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Appl. Biochem. Biotechnol. 162:62–74.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Silveira, M.H.L., Morais, A.R.C., da Costa Lopes, A.M., Olekszyszen, D.N., Bogel-Łukasik, R., Andreaus, J., Pereira Ramos, L. (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8: 3366–3390.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J. (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98:3000–3011.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Sluiter, A., Hames, B., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D. Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report NREL/TP-510-42618, National Renewable Energy Laboratory, Golden, CO, 2008.Google Scholar

  • Sun, X.F., Xu, F., Sun, R.C., Wang, Y.X., Fowler, P., Baird, M.S. (2004) Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym. Degrad. Stab. 86: 245–256.CrossrefGoogle Scholar

  • Sun, S.L., Wen, J.L., Ma, M.G., Sun, R.C., Jones, G.L. (2014) Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem. Ind. Crops Prod. 56:128–136.Web of ScienceCrossrefGoogle Scholar

  • Villaverde, J.J., Li, J., Ek, M., Ligero, P., de Vega, A. (2009) Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 57:6262–6270.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Wang, H., Liu, Y., Wang, Z., Yang, G., Lucia, L.A. (2016) Structural analysis of fast-growing aspen alkaline peroxide mechanical pulp lignin: a post-enzymatic treatment. Bioresource 11: 2723–2733.Google Scholar

  • Weil, J., Sarikaya, A., Rau, S.L., Goetz, J., Ladisch, C.M., Brewer, M., Hendrickson, R., Ladisch, M.R. (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 68:21–40.CrossrefGoogle Scholar

  • Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C. (2013) Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung 67:613–627.Web of ScienceGoogle Scholar

  • You, T., Zhang, L., Guo, S., Shao, L., Xu, F. (2015) Unraveling the structural modifications in lignin of Arundo donax Linn. during acid-enhanced ionic liquid pretreatment. J. Agric. Food Chem. 63:10747–10756.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C. (2011a) Structural characterization of lignin from triploid of Populus tomentosa Carr. J. Agric. Food Chem. 59:6605–6615.Web of ScienceCrossrefGoogle Scholar

  • Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C. (2011b) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59:10604–10614.CrossrefGoogle Scholar

  • Zhang, L., Gellerstedt, G. (2007) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Reson. Chem. 45:37–45.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2019-03-30

Accepted: 2019-08-06

Published Online: 2019-08-30

Funding Source: National Key Research and Development Plan

Award identifier / Grant number: 2017YFB0307901

This work was financially supported by the National Key Research and Development Plan (grant no. 2017YFB0307901).

Citation Information: Holzforschung, 20190087, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0087.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in