Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Incorporation of nano lignin reverse micelles on the transparency, UV-blocking and rheological properties of high-density polyethylene films

Yijie Zhou
  • School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yong Qian
  • Corresponding author
  • School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Senyi Wu
  • School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaowen Zhong
  • School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jinhao Huang
  • Corresponding author
  • School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xueqing Qiu
  • School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-11-16 | DOI: https://doi.org/10.1515/hf-2019-0091

Abstract

Aiming to improve the poor miscibility between lignin and non-polar materials, alkali lignin (AL) was self-assembled into lignin reverse micelles (LRM) and blended with high-density polyethylene (HDPE) to fabricate composite films. The particle size of AL increased from 3.5 nm to 130 nm after forming LRM, showing a uniform spherical morphology. The water droplet contact angle increased from 54° to 89°. Optimal and rheological analysis revealed that composite films exhibited good transparency, ultraviolet (UV)-blocking performance and low viscoelasticity after adding the nano LRM. Under the optimal dosage of 5 wt% LRM, the composite film can screen 93% UV rays, and the apparent viscosities, complex viscosities, storage and loss modulus of the mixture were the lowest. Atomic force microscopy (AFM) was used to investigate the molecular interactions between lignin and HDPE. The average adhesion force between LRM and HDPE in dry air was 1.07 mN m−1, while that between AL and HDPE was 0.77 mN m−1. AFM experiments fundamentally demonstrated better compatibility between LRM and HDPE, which was beneficial for the improvement of UV-blocking, rheological properties, as well as their processability of LRM/HDPE films.

This article offers supplementary material which is provided at the end of the article.

Keywords: alkali lignin; composite films; molecular interaction; nano reverse micelles; UV-blocking; viscoelasticity

References

  • Alexy, P., Košíková, B., Crkonová, G., Gregorová, A., Martiš, P. (2004) Modification of lignin-polyethylene blends with high lignin content using ethylene-vinylacetate copolymer as modifier. J. Appl. Polym. Sci. 94:1855–1860.CrossrefGoogle Scholar

  • Aro, T., Fatehi, P. (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem. 10:1861–1877.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Chen, F., Dai, H.H., Dong, X.L., Yang, J.T., Zhong, M.Q. (2011) Physical properties of lignin-based polypropylene blends. Polym. Composite. 32:1019–1025.CrossrefWeb of ScienceGoogle Scholar

  • Chen, L.H., Dou, J.Z., Ma, Q.L., Li, N., Wu, R.C., Bian, H.Y., Yelle, D.J., Vuorinen, T., Fu, S.Y., Pan, X.J., Zhu, J.Y. (2017) Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci. Adv. 3:1701735.Web of ScienceCrossrefGoogle Scholar

  • Chung, Y.L., Olsson, J.V., Li, R.J., Frank, C.W., Waymouth, R.M., Billington, S.L., Sattely, E.S. (2013) A renewable lignin–lactide copolymer and application in biobased composites. ACS Sustainable Chem. Eng. 1:1231–1238.Web of ScienceCrossrefGoogle Scholar

  • Dehne, L., Vila Babarro, C., Saake, B., Schwarz, K.U. (2016) Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind. Crops Prod. 86:320–328.Web of ScienceCrossrefGoogle Scholar

  • Duval, A., Lawoko, M. (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 85:78–96.Web of ScienceCrossrefGoogle Scholar

  • Finot, E., Lesniewska, E., Mutin, J.C., Goudonnet, J.P. (2000) Investigations of surface forces between gypsum microcrystals in air using atomic force microscopy. Langmuir. 16:4237–4244.CrossrefGoogle Scholar

  • Ge, Y.Y., Xiao, D., Li, Z.L., Cui, X.M. (2014) Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. J. Mater. Chem. A. 2:2136–2145.Web of ScienceCrossrefGoogle Scholar

  • Hashimoto, A., Sakamoto, K. (2011) UV-blocking film for food storage using titanium dioxide. Food Sci. Technol. Res. 17:199–202.Web of ScienceCrossrefGoogle Scholar

  • Jankowska, D., Heck, T., Schubert, M., Yerlikaya, A., Weymuth, C., Rentsch, D., Schober, I., Richter, M. (2018) Enzymatic synthesis of lignin-based concrete dispersing agents. Chem. Bio. Chem. 19:1365–1369.CrossrefGoogle Scholar

  • Jiang, T., Zhu, Y. (2015) Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale. 7:10760–10766.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Jiang, Y.Q., Song, Y.Y., Miao, M., Cao, S.M., Feng, X., Fang, J.H., Shi, L.Y. (2015) Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. J. Mater. Chem. C. 3:6717–6724.CrossrefWeb of ScienceGoogle Scholar

  • Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J. (2016) Towards lignin-based functional materials in a sustainable world. Green Chem. 18:1175–1200.CrossrefWeb of ScienceGoogle Scholar

  • Ko, H.U., Zhai, L., Park, J.H., Lee, J.Y., Kim, D., Kim, J. (2018) Poly(vinyl alcohol)-lignin blended resin for cellulose-based composites. J. Appl. Polym. Sci. 135:46655 (1–7).Web of ScienceGoogle Scholar

  • Konduri, M.K.R., Fatehi, P. (2018) Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry. Fuel Process. Technol. 176:267–275.Web of ScienceCrossrefGoogle Scholar

  • Li, Y., Sarkanen, S. (2005) Miscible blends of kraft lignin derivatives with low-T-g polymers. Macromolecules. 38:2296–2306.CrossrefGoogle Scholar

  • Li, S.Y., Li, Z.Q., Zhang, Y.D., Liu, C., Yu, G., Li, B., Mu, X.D., Peng, H. (2017a) Preparation of concrete water reducer via fractionation and modification of lignin extracted from pine wood by formic acid. ACS Sustainable Chem. Eng. 5:4214–4222.CrossrefWeb of ScienceGoogle Scholar

  • Li, Y.Y., Qiu, X.Q., Qian, Y., Xiong, W.L., Yang, D.J. (2017b) pH-responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery. Chem. Eng. J. 327:1176–1183.Web of ScienceCrossrefGoogle Scholar

  • Luo, F., Ning, N.Y., Chen, L., Su, R., Cao, J., Zhang, Q., Fu, Q., Zhao, S.G. (2009) Effects of compatibilizers on the mechanical properties of low density polyethylene/lignin blends. Chinese J. Polym. Sci. 27:833–842.CrossrefWeb of ScienceGoogle Scholar

  • Luo, X.G., Xiao, Y.Q., Wu, Q.X., Zeng, J. (2018) Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: lignin and soy oil-derived polyols. Int. J. Biol. Macromol. 115:786–791.Web of SciencePubMedCrossrefGoogle Scholar

  • Maldhure, A.V., Chaudhari, A.R., Ekhe, J.D. (2010) Thermal and structural studies of polypropylene blended with esterified industrial waste lignin. J. Therm. Anal. Calorim. 103:625–632.Web of ScienceGoogle Scholar

  • Maldhure, A.V., Ekhe, J.D., Deenadayalan, E. (2012) Mechanical properties of polypropylene blended with esterified and alkylated lignin. J. Appl. Polym. Sci. 125:1710–1712.Web of ScienceGoogle Scholar

  • Mandlekar, N., Cayla, A., Rault, F., Giraud, S., Salaün, F., Malucelli, G., Guan, J. (2017) Thermal stability and fire retardant properties of polyamide 11 microcomposites containing different lignins. Ind. Eng. Chem. Res. 56:13704–13714.CrossrefWeb of ScienceGoogle Scholar

  • Meyer, E.E., Rosenberg, K.J., Israelachvili, J. (2006) Recent progress in understanding hydrophobic interactions. Proc. Natl. Acad. Sci. U.S.A. 103:15739–15746.PubMedCrossrefGoogle Scholar

  • Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N. (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54:5806–5813.CrossrefPubMedGoogle Scholar

  • Pouteau, C., Dole, P., Cathala, B., Averous, L., Boquillon, N. (2003) Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stabil. 81:9–18.CrossrefGoogle Scholar

  • Qian, Y., Qiu, X.Q., Zhu, S.P. (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem. 17:320–324.CrossrefWeb of ScienceGoogle Scholar

  • Qian, Y., Qiu, X.Q., Zhu, S.P. (2016) Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustainable Chem. Eng. 4:4029–4035.CrossrefWeb of ScienceGoogle Scholar

  • Qian, Y., Zhong, X.W., Li, Y., Qiu, X.Q. (2017) Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind. Crop. Prod. 101:54–60.CrossrefWeb of ScienceGoogle Scholar

  • Ragauskas, J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. (2014) Lignin valorization: improving lignin processing in the biorefinery. Science. 344:1246843.Web of ScienceCrossrefPubMedGoogle Scholar

  • Ratnaweera, D.R., Saha, D., Pingali, S.V., Labbé, N., Naskar, A.K., Dadmun, M. (2015) The impact of lignin source on its self-assembly in solution. RSC Adv. 5:67258–67266.Web of ScienceCrossrefGoogle Scholar

  • Sadeghifar, H., Argyropoulos, D.S. (2015) Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustainable Chem. Eng. 3:349–356.Web of ScienceCrossrefGoogle Scholar

  • Sailaja, R.R.N. (2005) Low density polyethylene and grafted lignin polyblends using epoxy-functionalized compatibilizer: mechanical and thermal properties. Polym. Int. 54:1589–1598.CrossrefGoogle Scholar

  • Sailaja, R.R.N., Deepthi, M.V. (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater. Design. 31:4369–4379.Web of ScienceCrossrefGoogle Scholar

  • Saito, T., Brown, R.H., Hunt, M.A., Pickel, D.L., Pickel, J.M., Messman, J.M., Baker, F.S., Keller, M., Naskar, A.K. (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem. 14:3295.CrossrefWeb of ScienceGoogle Scholar

  • Saito, T., Perkins, J.H., Jackson, D.C., Trammel, N.E., Hunt, M.A., Naskar, A.K. (2013) Development of lignin-based polyurethane thermoplastics. RSC Adv. 3:21832.Web of ScienceCrossrefGoogle Scholar

  • Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., Sels, B.F. (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47:852–908.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Stewart, D. (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind. Crop. Prod. 27:202–207.Web of ScienceCrossrefGoogle Scholar

  • Upton, B.M., Kasko, A.M. (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116:2275–2306.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Wang, G.L., Xia, Y., Liang, B.K., Sui, W.J., Si, C.L. (2018) Successive ethanol–water fractionation of enzymatic hydrolysis lignin to concentrate its antimicrobial activity. J. Chem. Technol. Biot. 10:2977–2987.Web of ScienceGoogle Scholar

  • Xing, Q., Ruch, D., Dubois, P., Wu, L., Wang, W.J. (2017) Biodegradable and high-performance poly(butylene adipate-co-terephthalate)–lignin UV-blocking films. ACS Sustainable Chem. Eng. 5:10342–10351.CrossrefWeb of ScienceGoogle Scholar

  • Yi, H., Yang, Y., Gu, X.Y., Huang, J., Wang, C.Y. (2015) Multilayer composite microcapsules synthesized by Pickering emulsion templates and their application in self-healing coating. J. Mater. Chem. A. 3:13749–13757.Web of ScienceCrossrefGoogle Scholar

  • Zhang, W., Lin, H., Lin, Z. (2015) 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. ChemSusChem 8:2114–2122.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Zhao, W., Xiao, L.P., Song, G. (2017) From lignin subunits to aggregates: insights into lignin solubilization. Green Chem. 19:3272–3281.CrossrefWeb of ScienceGoogle Scholar

  • Zhou, M.S., Sun, Z.J., Yang, D.J., Huang, J.H., Qiu, X.Q. (2014) The Effect of Plasticizer on the Properties of Alkali Lignin/HDPE Composites. Acta. Polym. Sin. 2:210–217.Web of ScienceGoogle Scholar

About the article

Received: 2019-04-02

Accepted: 2019-10-02

Published Online: 2019-11-16


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 21878113

Award identifier / Grant number: 21606089

Award identifier / Grant number: 21436004

Funding Source: Central Universities

Award identifier / Grant number: 2018JQ05

Funding Source: Guangdong Province Science and Technology Research Project of China

Award identifier / Grant number: 2017B090903003

Funding Source: Guangzhou Science and Technology Research Project of China

Award identifier / Grant number: 201806010139

Award identifier / Grant number: 201704030126

This work was financially supported by the National Natural Science Foundation of China (NSFC), Funder ID: http://dx.doi.org/10.13039/501100001809 (21878113, 21606089, 21436004), Fundamental Research Funds for the Central Universities (2018JQ05), Guangdong Province Science and Technology Research Project of China (2017B090903003) and Guangzhou Science and Technology Research Project of China (201806010139, 201704030126).


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190091, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0091.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in