Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Kraft lignin reaction with paraformaldehyde

Hanna Paananen
  • Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tuula T. Pakkanen
  • Corresponding author
  • Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-12-13 | DOI: https://doi.org/10.1515/hf-2019-0147

Abstract

Lignin is the second most abundant biopolymer and will be an important source for carbon-containing compounds in the future. Based on their similar phenolic structures, lignin has great potential to become a valuable substitute for phenol in phenol-formaldehyde resin adhesives. To meet this aim, the sodium hydroxide (NaOH)-catalyzed reaction of kraft lignin with formaldehyde was studied by using paraformaldehyde (PFA) as a formaldehyde source. The advantage of using PFA, the solid polymer of formaldehyde, is the simple composition of the depolymerized solution. According to the results of differential scanning calorimetry (DSC), the lignin reaction was found to require a high NaOH concentration in order for the reaction with PFA to proceed at reasonably low temperatures compared to the curing temperature of phenol-formaldehyde resins (approximately 150°C). On the other hand, high alkalinity conditions are known to favor the disproportionation of formaldehyde to formic acid and methanol. Due to the moderate reactivity of lignin, the Cannizzaro reaction can compete with the methylolation reaction of lignin. Based on the results of 13C, 31P and 1H-13C heteronuclear single quantum correlation nuclear magnetic resonance (HSQC NMR), methylolation was found to be the main reaction occurring in the lignin-formaldehyde reaction.

Keywords: 1H-13C HSQC NMR; differential scanning calorimetry; methylolation of lignin; paraformaldehyde; softwood kraft lignin

References

  • Aminzadeh, S., Lauberts, M., Dobele, G., Ponomarenko, J., Mattsson, T., Lindström, M.E., Sevastyanova, O. (2018) Membrane filtration of kraft lignin: structural charactristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crops Prod. 112:200–209.CrossrefWeb of ScienceGoogle Scholar

  • Balakshin, M., Capanema, E. (2015) On the quantification of lignin hydroxyl groups with 31P and 13C NMR spectroscopy. J. Wood Chem. Technol. 35:220–237.CrossrefGoogle Scholar

  • Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., Zehner, P. (1999) Chemistry in supercritical water. Angew. Chem. Int. Ed. 38:2998–3014.CrossrefGoogle Scholar

  • Chakar, F.S., Ragauskas, A.J. (2004) Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20:131–141.CrossrefGoogle Scholar

  • Constant, S., Wienk, H.L.J., Frissen, A.E., de Peinder, P., Boelens, R., van Es, D.S., Grisel, R.J.H., Weckhuysen, B.M., Huijgen, W.J.J., Gosselink, R.J.A., Bruijnincx, P.C.A. (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18:2651–2665.CrossrefWeb of ScienceGoogle Scholar

  • Cook, P.M., Hess, S.L. (1991) U.S. Patent 5,010,156.Google Scholar

  • Danielson, B., Simonson, R. (1998a) Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. J. Adhes. Sci. Technol. 12:923–939.CrossrefGoogle Scholar

  • Danielson, B., Simonson, R. (1998b) Kraft lignin in phenol formaldehyde resin. Part 2. Evaluation of an industrial trial. J. Adhes. Sci. Technol. 12:941–946.CrossrefGoogle Scholar

  • Du, X., Li, J., Lindström, M.E. (2014) Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pretreatment. Ind. Crops Prod. 52:729–735.Web of ScienceCrossrefGoogle Scholar

  • Fox, C.H., Johnson, F.B., Whiting, J., Roller, P.P. (1985) Formaldehyde fixation. J. Histochem. Cytochem. 33:845–853.CrossrefPubMedGoogle Scholar

  • Gellerstedt, G. (2015) Softwood kraft lignin: raw material for the future. Ind. Crops Prod. 77:845–854.Web of ScienceCrossrefGoogle Scholar

  • Grajales, E.J., Alarcón, E.A., Villa, A. (2015) Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis. Thermochim. Acta 609:49–60.Web of ScienceCrossrefGoogle Scholar

  • Granata, A., Argyropoulos, D.S. (1995) 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J. Agric. Food Chem. 43: 1538–1544.CrossrefGoogle Scholar

  • Helander, K.G. (2000) Formaldehyde prepared from paraformaldehyde is stable. Biotech. Histochem. 75:19–22.PubMedCrossrefGoogle Scholar

  • Holopainen, T., Alvila, L., Rainio, J., Pakkanen, T.T. (1997) Phenol-formaldehyde resol resins studied by 13C-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. J. Appl. Polym. Sci. 66:1183–1193.CrossrefGoogle Scholar

  • Holopainen, T., Alvila, L., Savolainen, P., Pakkanen, T.T. (2004) Effect of F/P and OH/P molar ratios and condensation viscosity on the structure of phenol-formaldehyde resol resins for overlays – a statistical study. J. Appl. Polym. Sci. 91:2942–2948.CrossrefGoogle Scholar

  • Hu, L., Pan, H., Zhou, Y., Zhang, M. (2011) Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources 6:3515–3525.Google Scholar

  • Khan, M.A., Ashraf, S.M., Malhotra, V.P. (2004) Eucalyptus bark lignin substituted phenol formaldehyde adhesives: a study on optimization of reaction parameters and characterization. J. Appl. Polym. Sci. 92:3514–3523.CrossrefGoogle Scholar

  • Kiernan, J.A. (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Micros. Today 8:8–13.CrossrefGoogle Scholar

  • Kouisni, L., Paleologou, M., Zhang, Y., Wang, X.-M., Feng, M. (2012) PCT Patent WO 2012/106808 A1.Google Scholar

  • Li, W., Wu, X. (2015) The applications of (para)formaldehyde in metal-catalyzed organic synthesis. Adv. Synth. Catal. 357:3393–3418.Web of ScienceCrossrefGoogle Scholar

  • Li, M., Yoo, C.G., Pu, Y., Ragauskas, A.J. (2018) 31P NMR chemical shifts of solvents and products impurities in biomass pretreatments. ACS Sustain. Chem. Eng. 6:1265–1270.CrossrefGoogle Scholar

  • Liang, J., Li, T., Cao, M., Du, G. (2018) Urea-formaldehyde resin structure formation under alkaline condition: a quantitative 13C-NMR study. J. Adhes. Sci. Technol. 32:439–447.CrossrefGoogle Scholar

  • Ma, R., Guo, M., Zhang, X. (2018) Recent advances in oxidative valorization of lignin. Catal. Today 302:50–60.Web of ScienceCrossrefGoogle Scholar

  • Maiwald, M., Fischer, H.H., Ott, M., Peschla, R., Kuhnert, C., Kreiter, C.G., Maurer, G., Hasse, H. (2003) Quantitative NMR spectroscopy of complex liquid mixtures: methods and results for chemical equilibria in formaldehyde−water−methanol at temperatures up to 383 K. Ind. Eng. Chem. Res. 42:259–266.CrossrefGoogle Scholar

  • Malutan, T., Nicu, R., Popa, VI. (2008) Contribution to the study of hydroxymetylation reaction of alkali lignin. BioResources 3:13–20.Google Scholar

  • Marton, J., Marton, T., Falkehag, S.I., Adler, E. (1966) Alkali-catalyzed reactions of formaldehyde with lignins. In: Lignin Structure and Reactions. Advances in Chemistry, Vol. 59. American Chemical Society, Washington, DC, USA.pp. 125–144.Google Scholar

  • Moret, S., Dyson, P.J., Laurenczy, G. (2013) Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO2 hydrogenation in pressurised aqueous solutions using 1H and 13C NMR spectroscopy. Dalt. Trans. 42:4353–4356.CrossrefGoogle Scholar

  • Moubarik, A., Grimi, N., Boussetta, N., Pizzi, A. (2013) Isolation and characterization of lignin from Moroccan sugar cane bagasse: production of lignin–phenol-formaldehyde wood adhesive. Ind. Crops Prod. 45:296–302.CrossrefWeb of ScienceGoogle Scholar

  • Nogueira, M.I., Barbieri, C., Vieira, R., Marques, E.R., Moreno, J.E.H. (1997) A practical device for histological fixative procedures that limits formaldehyde deleterious effects in laboratory environments. J. Neurosci. Methods 72:65–70.PubMedCrossrefGoogle Scholar

  • Osada, M., Watanabe, M., Sue, K., Adschiri, T., Arai, K. (2004) Water density dependence of formaldehyde reaction in supercritical water. J. Supercrit. Fluids 28:219–224.CrossrefGoogle Scholar

  • Pang, B., Yang, S., Fang, W., Yuan, T.-Q., Argyropoulos, D.S., Sun, R.-C. (2017) Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Ind. Crops Prod. 108:316–326.CrossrefWeb of ScienceGoogle Scholar

  • Park, B.-D., Riedl, B., Yoon, S.K., So, W.T. (2002) Effect of synthesis parameters on thermal behavior of phenol–formaldehyde resol resin. J. Appl. Polym. Sci. 83:1415–1424.CrossrefGoogle Scholar

  • Peng, W., Barry, A.O., Riedl, B. (1992) Characterization of methylolated lignin by H-NMR and 13C-NMR. J. Wood Chem. Technol. 12:299–312.CrossrefGoogle Scholar

  • Pu, Y., Cao, S., Ragauskas, A.J. (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ. Sci. 4:3154–3166.CrossrefGoogle Scholar

  • Rahimi, A., Azarpira, A., Kim, H., Ralph, J., Stahl, S.S. (2013) Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135:6415–6418.CrossrefWeb of SciencePubMedGoogle Scholar

  • Rivlin, M., Eliav, U., Navon, G. (2015) NMR studies of the equilibria and reaction rates in aqueous solutions of formaldehyde. J. Phys. Chem. B 119:4479–4487.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Rojas, A.J., Williams, R.J.J. (1979) Novolacs from paraformaldehyde. J. Appl. Polym. Sci. 23:2083–2088.CrossrefGoogle Scholar

  • Shimizu, S., Yokoyama, T., Akiyama, T., Matsumoto, Y. (2012) Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin. J. Agric. Food Chem. 60:6471–6476.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Singh, V., Prathap, S. (1997) Reaction of isoeugenol with formaldehyde in basic medium: formation of trans-4-(4-hydroxy-3-hydroxymethyl-5-methoxy)-5-methyl-1,3-dioxane and its transformation into the tricyclo5.2.2.02,6]undecane system. J. Chem. Research (S) 11: 422–423.Google Scholar

  • Taverna, M.E., Felissia, F., Area, M.C., Estenoz, D.A., Nicolau, V.V. (2019) Hydroxymethylation of technical lignins from South American sources with potential use in phenolic resins. J. App. Polym. Sci. 136:47712.CrossrefGoogle Scholar

  • Thavarajah, R., Mudimbaimannar, V.K., Elizabeth, J., Rao, U.K., Ranganathan, K. (2012) Chemical and physical basics of routine formaldehyde fixation. J. Oral Maxillofac. Pathol. 16:400–405.PubMedCrossrefGoogle Scholar

  • Tsujino, Y., Wakai, C., Matubayashi, N., Nakahara, M. (1999) Noncatalytic Cannizzaro-type reaction of formaldehyde in hot water. Chem. Lett. 28:287–288.CrossrefGoogle Scholar

  • Turunen, M., Alvila, L., Pakkanen, T.T., Rainio, J. (2003) Modification of phenol-formaldehyde resol resins by lignin, starch, and urea. J. Appl. Polym. Sci. 88:582–588.CrossrefGoogle Scholar

  • Wang, M., Leitch, M., Xu, C. (Charles). (2009) Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur. Polym. J. 45:3380–3388.Web of ScienceCrossrefGoogle Scholar

  • Wang, M., Elisabeth, S., Li, J. (2016) Fast and reliable quantification of lignin reactivity via reaction with dimethylamine and formaldehyde (Mannich reaction). Holzforschung 71:27.Web of ScienceGoogle Scholar

  • Yu, J., Li, X., Xu, Z., Xiao, W. (2013) NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance. Environ. Sci. Technol. 47:9928–9933.Web of ScienceCrossrefPubMedGoogle Scholar

  • Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M. (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552–3599.CrossrefWeb of SciencePubMedGoogle Scholar

  • Zhao, L., Griggs, B.F., Chen, C.-L., Gratzl, J.S., Hse, C.-Y. (1994) Utilization of softwood kraft lignin as adhesive for the manufacture of reconstituted wood. J. Wood Chem. Technol. 14:127–145.CrossrefGoogle Scholar

About the article

Received: 2019-05-17

Accepted: 2019-10-18

Published Online: 2019-12-13


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The Finnish Funding Agency for Technology and Innovation (funder Id: http://dx.doi.org/10.13039/501100003406) and the European Union/European Regional Development Fund are gratefully acknowledged for their financial support within the EVIM project. Furthermore, a scholarship (H.P.) from the University of Eastern Finland (funder Id: http://dx.doi.org/10.13039/100007753) is acknowledged.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190147, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0147.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in