Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

The effect of ionic liquid and superbase pre-treatment on the spring-back, set-recovery and Brinell hardness of surface-densified Scots pine

Benedikt Neyses
  • Corresponding author
  • Wood Science and Engineering, Luleå University of Technology, Forskargatan 1, SE-93187 Skellefteå, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olov Karlsson
  • Wood Science and Engineering, Luleå University of Technology, Forskargatan 1, SE-93187 Skellefteå, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dick Sandberg
  • Wood Science and Engineering, Luleå University of Technology, Forskargatan 1, SE-93187 Skellefteå, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-10-07 | DOI: https://doi.org/10.1515/hf-2019-0158

Abstract

Compressing the surface of sawn timber results in a substantial increase in hardness, and this opens up new market opportunities of using low-density timber species as the raw material for high-value wood products. Unfortunately, widespread commercialisation is hindered by the lack of an industrially viable surface densification process, the major obstacle being the set-recovery (SR) of the densified wood cells upon exposure to moisture. Our hypothesis is that partial dissolution of the crystalline cellulose during densification will largely prevent the SR of densified wood. We therefore evaluated the effect of ionic liquid (IL) or organic superbase pre-treatment on the elastic spring-back (SB), SR and Brinell hardness (HB) of surface-densified wood. Specimens of Scots pine were treated with solutions of ILs or superbases, and then densified in a hot press at temperatures between 200°C and 270°C. The SR was reduced from 90% for the control group to only about 10% for the treated materials. The treated and densified specimens exhibited a higher HB than their untreated and densified counterparts. The method presented in this study is a precursor to the development of a continuous densification process adapted for an open system. Further studies are needed to understand the underlying mechanisms of the pre-treatment.

Keywords: chemical treatment; surface modification; wood compression; wood modification

References

  • Bekhta, P., Proszyk, S., Krystofiak, T., Sedliacik, J., Novak, I., Mamonova, M. (2017) Effects of short-term thermomechanical densification on the structure and properties of wood veneers. Wood Mater. Sci. Eng. 12:40–54.CrossrefWeb of ScienceGoogle Scholar

  • Domínguez de María, P. (2014) Recent trends in (ligno) cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J. Chem. Technol. Biotechnol. 89:11–18.CrossrefWeb of ScienceGoogle Scholar

  • Fang, C.H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P. (2012) Densification of wood veneers by compression combined with heat and steam. Eur. J. Wood Wood Prod. 70:155–163.CrossrefWeb of ScienceGoogle Scholar

  • Foksowicz-Flaczyk, J., Walentowska, J. (2013) Antifungal activity of ionic liquid applied to linen fabric. Int. Biodeter. Biodegr. 84:412–415.CrossrefWeb of ScienceGoogle Scholar

  • Gabrielli, C.P., Kamke, F.A. (2010) Phenol-formaldehyde impregnation of densified wood for improved dimensional stability. Wood. Sci. Technol. 44:95–104.Web of ScienceCrossrefGoogle Scholar

  • Gong, M., Lamason, C., Li, L. (2010) Interactive effect of surface densification and post-heat-treatment on aspen wood. J. Mater. Process. Technol. 210:293–296.CrossrefWeb of ScienceGoogle Scholar

  • Hanabusa, H., Izgorodina, E.I., Suzuki, S., Takeoka, Y., Rikukawa, M., Yoshizawa-Fujita, M. (2018) Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose. Green Chem. 20:1412–1422.CrossrefWeb of ScienceGoogle Scholar

  • Inoue, M., Norimoto, M., Otsuka, Y., Yamada, T. (1990) Surface compression of coniferous wood lumber. I. A new technique to compress the surface layer. Mokuzai Gakkaishi. 36:969–975.Google Scholar

  • Inoue, M., Norimoto, M., Otsuka, Y., Yamada, T., Tanahashi, M., Rowell, R.M. (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci. 25:224–235.Google Scholar

  • Inoue, M., Sekino, N., Morooka, T., Rowell, R.M., Norimoto, M. (2008) Fixation of compressive deformation in wood by pre-steaming. J. Trop. For. Sci. 273–281.Google Scholar

  • Ishikawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. John Wiley & Sons, Ltd., Chichester, West Sussex, UK, 2009.Google Scholar

  • Khalil, H.A., Dungani, R., Mohammed, I.A., Hossain, M.S., Aprilia, N.S., Budiarso, E., Rosamah, E. (2014) Determination of the combined effect of chemical modification and compression of agatis wood on the dimensional stability, termite resistance, and morphological structure. Bioresources 9:6614–6626.Google Scholar

  • Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S. (2007) Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55:9142–9148.Web of SciencePubMedCrossrefGoogle Scholar

  • King, A.W., Asikkala, J., Mutikainen, I., Järvi, P., Kilpeläinen, I. (2011) Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew. Chem. Int. Edit. 50:6301–6305.Web of ScienceCrossrefGoogle Scholar

  • Kutnar, A., Kamke, F.A. (2012) Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood. Sci. Technol. 46:953–964.Web of ScienceCrossrefGoogle Scholar

  • Kutnar, A., Sandberg, D., Haller, P. (2015) Compressed and moulded wood from processing to products. Holzforschung 69:885–897.CrossrefWeb of ScienceGoogle Scholar

  • Laine, K. (2014) Improving the properties of wood by surface densification. Doctoral dissertation. Aalto University Publication Series, Helsinki, Finland.Google Scholar

  • Laine, K., Rautkari, L., Hughes, M. (2013a) The effect of process parameters on the hardness of surface densified Scots pine solid wood. Eur. J. Wood Wood Prod. 71:13–16.CrossrefWeb of ScienceGoogle Scholar

  • Laine, K., Rautkari, L., Hughes, M., Kutnar, A. (2013b) Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. Eur. J. Wood Wood Prod. 71:17–23.Web of ScienceCrossrefGoogle Scholar

  • Laine, K., Segerholm, K., Wålinder, M., Rautkari, L., Ormondroyd, G., Hughes, M., Jones, D. (2013c) Micromorphological studies of surface densified wood. J. Mater. Sci. 49:2027–2034.Web of ScienceGoogle Scholar

  • Lamason, C., Gong, M. (2007) Optimization of pressing parameters for mechanically surface-densified aspen. Forest Prod. J. 57:64.Google Scholar

  • Miyafuji, H., Fujiwara, Y. (2013) Fire resistance of wood treated with various ionic liquids (ILs). Holzforschung 67:787–793.CrossrefWeb of ScienceGoogle Scholar

  • Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P. (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind. Crops Prod. 32:175–201.Web of ScienceCrossrefGoogle Scholar

  • Navi, P., Heger, F. (2004) Combined densification and thermo-hydro-mechanical processing of wood. Mater. Res. Bull. 29:332–336.CrossrefGoogle Scholar

  • Navi, P., Pizzi, A. (2014) Property changes in thermo-hydro-mechanical processing. Holzforschung 69:863–873.Google Scholar

  • Navi, P., Sandberg, D. Thermo-Hydro-Mechanical Processing of Wood. EPFL Press, Lausanne, Switzerland, 2012.Google Scholar

  • Neyses, B. (2016) Surface-Densified Wood – From Laboratory-Scale Research Towards a Competitive Product. Licentiate Thesis, Luleå University of Technology, Luleå, Sweden.Google Scholar

  • Neyses, B., Hagman, O., Sandberg, D., Nilsson, A. (2016) Development of a continuous wood surface densification process: the roller pressing technique. In: Proceedings of the 59th International Convention of Society of Wood Science and Technology: Forest Resource and Products: Moving Toward a Sustainable Future. Ed. S. LeVan-Green, March 6–10, Curitiba, Brazil. pp. 17–24.Google Scholar

  • Neyses, B., Rautkari, L., Yamamoto, A., Sandberg, D. (2017) Pre-treatment with sodium silicate, sodium hydroxide, ionic liquids or methacrylate resin to reduce the set-recovery and increase the hardness of surface-densified Scots pine. Iforest 10:857–864.CrossrefWeb of ScienceGoogle Scholar

  • Niemz, P., Stübi, T. (2000) Investigations of hardness measurements on wood based materials using a new universal measurement system. In: Proceedings of the Symposium on Wood Machining, Properties of Wood and Wood Composites Related to Wood Machining, Vienna, Austria.Google Scholar

  • Ou, R., Xie, Y., Wang, Q., Sui, S., Wolcott, M.P. (2014) Thermoplastic deformation of poplar wood plasticized by ionic liquids measured by a nonisothermal compression technique. Holzforschung 68:555–566.CrossrefWeb of ScienceGoogle Scholar

  • Parviainen, A., King, A.W., Mutikainen, I., Hummel, M., Selg, C., Hauru, L.K., Sixta, H., Kilpeläinen, I. (2013) Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. ChemSusChem 6:2161–2169.Web of SciencePubMedCrossrefGoogle Scholar

  • Patachia, S., Croitoru, C., Friedrich, C. (2012) Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids. Appl. Surf. Sci. 258:723–729.Web of ScienceGoogle Scholar

  • Pernak, J., Zabielska-Matejuk, J., Kropacz, A., Foksowicz-Flaczyk, J. (2004) Ionic liquids in wood preservation. Holzforschung 58:286–291.CrossrefWeb of ScienceGoogle Scholar

  • Pfriem, A., Dietrich, T., Buchelt, B. (2012) Furfuryl alcohol impregnation for improved plasticization and fixation during the densification of wood. Holzforschung 66:215–218.Web of ScienceGoogle Scholar

  • Pizzi, A., Leban, J.M., Zanetti, M., Pichelin, F., Wieland, S., Properzi, M. (2005) Surface finishes by mechanically induced wood surface fusion. Holz Roh Werkst. 63:251–255.CrossrefGoogle Scholar

  • Rautkari, L., Properzi, M., Pichelin, F., Hughes, M. (2009) Surface modification of wood using friction. Wood Sci. Technol. 43:291–299.CrossrefWeb of ScienceGoogle Scholar

  • Sandberg, D., Haller, P., Navi, P. (2013) Thermo-hydro-mechanical (THM) wood treatments. Wood Mater. Sci. Eng. 8:64–88.Google Scholar

  • Schuerch, C., Burdick, M.P., Mahdalik, M. (1966) Liquid ammonia-solvent combinations in wood plasticization. Chemical treatments. Ind. Eng. Chem. Prod. Res. Dev. 5:101–105.CrossrefGoogle Scholar

  • Stamm, A.J. Wood and Cellulose Science. The Ronald Press Company, New York, NY, 1964.Google Scholar

  • Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124:4974–4975.PubMedCrossrefGoogle Scholar

  • Tarkow, H., Seborg, R. (1968) Surface densification of wood. Forest Prod. J. 18:104–107.Google Scholar

  • Zavrel, M., Bross, D., Funke, M., Büchs, J., Spiess, A.C. (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour. Technol. 100:2580–2587.Web of SciencePubMedCrossrefGoogle Scholar

  • Zhang, J., Wu, J., Yu, J., Zhang, X., He, J., Zhang, J. (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater. Chem. Front. 1:1273–1290.CrossrefGoogle Scholar

About the article

Received: 2019-05-28

Accepted: 2019-08-23

Published Online: 2019-10-07


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Financial support from the Swedish Innovation Agency (Vinnova) through the Innovation Potential for the Bio-Based Society (IPOS) DP2 project (2017-02697) is gratefully acknowledged.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190158, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0158.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in