Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

An effective technique for constructing wood composite with superior dimensional stability

Xiaoshuai Han
  • MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhenxing Wang
  • MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qinqin Zhang
  • MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Junwen Pu
  • Corresponding author
  • MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-10-30 | DOI: https://doi.org/10.1515/hf-2019-0176

Abstract

Fast-growing wood is an abundant and low-cost material and is widely used for structural building and furniture construction. However, inferior mechanical properties and dimensional instability limit its application in advanced engineering structures. Herein, we developed a simple, effective and “green” method to transform bulk poplar into a high-performance wood composite. The wood composite was prepared by the impregnation of the itaconic acid (IA) solution acting as a grafting anchor into the wood matrix, followed by in situ polymerization of styrene upon heating to form a hydrophobic polymer within the wood scaffold. Scanning electron microscope (SEM) analysis revealed that hydrophobic polystyrene (PS) was deposited in wood cell walls and lumens, leading to a reduced water uptake and remarkably enhanced dimensional stability, as well as generally improved mechanical properties. In addition, the PS generated improvement in the thermal stability of the wood composite in comparison with that of natural wood (W).

Keywords: dimensional stability; grafting anchor; in situ polymerization; itaconic acid (IA); poplar wood

References

  • Abdallah, M.A.-E., Sharkey, M., Berresheim, H., Harrad, S. (2018) Hexabromocyclododecane in polystyrene packaging: a downside of recycling? Chemosphere 199:612–616.Web of ScienceCrossrefPubMedGoogle Scholar

  • Adebawo, F., Naithani, V., Sadeghifar, H., Tilotta, D., Lucia, L., Jameel, H., Ogunsanwo, O. (2016) Morphological and interfacial properties of chemically-modified tropical hardwood. RSC Adv. 6:6571–6576.Web of ScienceCrossrefGoogle Scholar

  • ASTM D2240. Standard test method for rubber property-durometer hardness. ASTM International, West Conshohocken, PA, 2015, www.astm.org.

  • Berglund, L.A., Burgert, I.J. (2018) Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30:1704285.CrossrefWeb of ScienceGoogle Scholar

  • Cabane, E., Keplinger, T., Künniger, T., Merk, V., Burgert, I. (2016) Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Sci. Rep. 6:31287.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Cai, S., Zhang, B., Cremaschi, L. (2017) Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Build. Environ. 123:50–65.CrossrefWeb of ScienceGoogle Scholar

  • Cave, I.D. (1997) Theory of X-ray measurement of microfibril angle in wood. Wood Sci. Technol. 31:225–234.CrossrefGoogle Scholar

  • Chai, Y., Liu, J., Wang, Z., Zhao, Y. (2016) Dimensional stability and mechanical properties of plantation poplar wood esterified using acetic anhydride. BioResources 12:912–922.Web of ScienceGoogle Scholar

  • Ermeydan, M.A., Cabane, E., Gierlinger, N., Koetz, J., Burgert, I. (2014) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv. 4:12981–12988.CrossrefWeb of ScienceGoogle Scholar

  • GB/T 1933-2009 (2009) Method for determination of the density of wood. Chinese National Standardization Management Committee, Beijing, China.Google Scholar

  • GB/T 1934.1-2009 (2009) Method for determination of the water absorption of wood. Chinese National Standardization Management Committee, Beijing, China.Google Scholar

  • GB/T 1935-2009 (2009) Method of testing in compressive strength parallel to grain of wood. Chinese National Standardization Management Committee, Beijing, China.Google Scholar

  • GB/T 1936.1-2009 (2009) Method of testing in bending strength of wood. Chinese National Standardization Management Committee, Beijing, China.Google Scholar

  • Geilen, F.M., Engendahl, B., Harwardt, A., Marquardt, W., Klankermayer, J., Leitner, W.J. (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 49:5510–5514.CrossrefWeb of ScienceGoogle Scholar

  • Hadi, Y.S., Massijaya, M.Y. (2018) Polystyrene impregnated wood resistance to marine borer Attack. In: The 12th Conference of The Pacific Rim Termite Research Group, Yogyakarta, Indonesia.Google Scholar

  • Han, X., Yin, Y., Zhang, Q., Li, R., Pu, J. (2018) Improved wood properties via two-step grafting with itaconic acid (IA) and nano-SiO2. Holzforschung 72:499–506.Web of ScienceCrossrefGoogle Scholar

  • He, X., Xiao, Z., Feng, X., Sui, S., Wang, Q., Xie, Y. (2016) Modification of poplar wood with glucose crosslinked with citric acid and 1,3-dimethylol-4,5-dihydroxy ethyleneurea. Holzforschung 70:47–53.Web of ScienceCrossrefGoogle Scholar

  • Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, West Sussex, England, 2007.Google Scholar

  • Keplinger, T., Cabane, E., Chanana, M., Hass, P., Merk, V., Gierlinger, N., Burgert, I. (2015) A versatile strategy for grafting polymers to wood cell walls. Acta Biomater. 11:256–263.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Kim, H.-S., Yang, H.-S., Kim, H.-J., Park, H.-J. (2004) Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J. Therm. Anal. Calorim. 76:395–404.CrossrefGoogle Scholar

  • Kong, L., Guan, H., Wang, X. (2018) In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustain. Chem. Eng. 6:3349–3357.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, A., Ryparová, P., Škapin, A.S., Humar, M., Pavlič, M., Tywoniak, J., Hajek, P., Žigon, J., Petrič, M. (2016) Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose 23:3249–3263.Web of ScienceCrossrefGoogle Scholar

  • Kumar, A., Richter, J., Tywoniak, J., Hajek, P., Adamopoulos, S., Šegedin, U., Petrič, M. (2017) Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood. Holzforschung 72:45–56.CrossrefWeb of ScienceGoogle Scholar

  • Li, L., Liu, S., Xu, J., Yu, S., Liu, F., Xie, C., Ge, X., Ren, J. (2013) Esterification of itaconic acid using Ln~ SO42−/TiO2–SiO2 (Ln=La3+, Ce4+, Sm3+) as catalysts. J. Mol. Catal. Chem. 368:24–30.Web of ScienceGoogle Scholar

  • Liu, W., Zhang, L., Ye, X. (2019) Preparation and characterisation of wood flour/polystyrene composites by subcritical fluid-assisted reactive extrusion. Plast. Rubber Compos. 48:307–316.CrossrefWeb of ScienceGoogle Scholar

  • Matsuda, H. (2017) Chemical modification of solid wood. In: Chemical Modification of Lignocellulosic Materials. Routledge, New York, NY, USA. pp. 159–183.Google Scholar

  • Mattos, B.D., Lourençon, T.V., Serrano, L., Labidi, J., Gatto, D.A. (2015) Chemical modification of fast-growing eucalyptus wood. Wood Sci. Technol. 49:273–288.CrossrefWeb of ScienceGoogle Scholar

  • Medway, A.M., Sperry, J. (2014) Heterocycle construction using the biomass-derived building block itaconic acid. Green Chem. 16:2084–2101.CrossrefWeb of ScienceGoogle Scholar

  • Qiao, Y., Wang, B., Ji, Y., Xu, F., Zong, P., Zhang, J., Tian, Y. (2019) Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Bioresour. Technol. 278:287–295.Web of SciencePubMedCrossrefGoogle Scholar

  • Rani, M., Shim, W.J., Han, G.M., Jang, M., Song, Y.K., Hong, S.H. (2014) Hexabromocyclododecane in polystyrene based consumer products: an evidence of unregulated use. Chemosphere 110:111–119.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Robert, T., Friebel, S. (2016) Itaconic acid – a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 18:2922–2934.CrossrefWeb of ScienceGoogle Scholar

  • Schirp, A., Su, S. (2016) Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polym. Degrad. Stab. 126:81–92.CrossrefGoogle Scholar

  • Segal, L., Creely, J., Martin Jr, A., Conrad, C.M. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29:786–794.CrossrefGoogle Scholar

  • Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons, West Sussex, England, 2004.Google Scholar

  • Sun, Y., Gu, J., Tan, H., Zhang, Y., Huo, P. (2018) Physicochemical properties of starch adhesives enhanced by esterification modification with dodecenyl succinic anhydride. Int. J. Biol. Macromol. 112:1257–1263.Web of SciencePubMedCrossrefGoogle Scholar

  • Tammer, M.G. Sokrates: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Springer, Leipzig, Germany, 2004.Google Scholar

  • Wang, K., Dong, Y., Yan, Y., Zhang, S., Li, J. (2018) Improving dimensional stability and durability of wood polymer composites by grafting polystyrene onto wood cell walls. Polym. Compos. 39:119–125.CrossrefWeb of ScienceGoogle Scholar

  • Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.CrossrefWeb of ScienceGoogle Scholar

  • Yao, M., Yang, Y., Song, J., Yu, Y., Jin, Y. (2017) Melamine formaldehyde modified furfurylation to improve Chinese fir’s dimensional stability and mechanical properties. BioResources 12:3057–3066.Web of ScienceGoogle Scholar

About the article

Received: 2019-06-20

Accepted: 2019-09-03

Published Online: 2019-10-30


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was sponsored by a special Fund from the Beijing Common Construction Project and the Beijing Forestry University, Grant no. 2016HXKFCLXY001.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190176, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0176.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in