Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Predicting the lignin H/G ratio of Pinus sylvestris L. wood samples by PLS-R models based on near-infrared spectroscopy

Ana Alves
  • Corresponding author
  • Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rita Simões
  • Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Luís Lousada
  • Department of Forestry Sciences and Landscape (CIFAP), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
  • Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Lima-Brito
  • BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences University of Lisboa, C8 BDG Campo Grande, Portugal
  • Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Rodrigues
  • Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-12-06 | DOI: https://doi.org/10.1515/hf-2019-0186

Abstract

Softwood lignin consists mainly of guaiacyl (G) units and low amounts of hydroxyphenyl (H) units. Even in a small percentage, the ratio of H to G (H/G) and the intraspecific variation are crucial wood lignin properties. Analytical pyrolysis (Py) was already successfully used as a reference method to develop a model based on near-infrared (NIR) spectroscopy for the determination of the H/G ratio on Pinus pinaster (Pnb) wood samples. The predicted values of the Pinus sylvestris (Psyl) samples by this model were well correlated (R = 0.91) with the reference data (Py), but with a bias that increased with increasing H/G ratio. Partial least squares regression (PLS-R) models were developed for the prediction of the H/G ratio, dedicated models for Psyl wood samples and common models based on both species (Pnb and Psyl). All the calibration models showed a high coefficient of determination and low errors. The coefficient of determination of the external validation of the dedicated models ranged from 0.92 to 0.96 and for the common models ranged from 0.83 to 0.93. However, the comparison of the predictive ability of the dedicated and common models using the Psyl external validation set showed almost identical predicted values.

Keywords: analytical pyrolysis; H/G ratio; lignin; NIR; Pinus sylvestris; PLS-R

References

  • Alves, A., Schwanninger, M., Pereira, H., Rodrigues, J. (2006a) Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung 60:29–31.CrossrefGoogle Scholar

  • Alves, A., Schwanninger, M., Pereira, H., Rodrigues, J. (2006b) Analytical pyrolysis as a direct method to determine the lignin content in wood – Part 1: comparison of pyrolysis lignin with Klason lignin. J. Anal. Appl. Pyrol. 76:209–213.CrossrefGoogle Scholar

  • Alves, A., Rodrigues, J., Wimmer, R., Schwanninger, M. (2008) Analytical pyrolysis as a direct method to determine the lignin content in wood. Part 2: evaluation of the common model and the influence of compression wood. J. Anal. Appl. Pyrol. 81:167–172.CrossrefWeb of ScienceGoogle Scholar

  • Alves, A., Gierlinger, N., Schwanninger, M., Rodrigues, J. (2009) Analytical pyrolysis as a direct method to determine the lignin content in wood: Part 3. Evaluation of species-specific and tissue-specific differences in softwood lignin composition using principal component analysis. J. Anal. Appl. Pyrol. 85:30–37.CrossrefWeb of ScienceGoogle Scholar

  • Alves, A., Simoes, R., Stackpole, D.J., Vaillancourt, R.E., Potts, B.M., Schwanninger, M., Rodrigues, J. (2011) Determination of the syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by near infrared-based partial least squares regression models using analytical pyrolysis as the reference method. J. Near Infrared Spectrosc. 19:343–348.Web of ScienceCrossrefGoogle Scholar

  • Alves, A., Santos, S., Simoes, R., Rodrigues, J. (2018) Characterization of residual lignin in cellulose isolated by the diglyme method from three Pinus species by IR spectroscopy and analytical pyrolysis. Holzforschung 72:91–96.Web of ScienceCrossrefGoogle Scholar

  • Campbell, M.M., Sederoff, R.R. (1996) Variation in lignin content and composition – mechanism of control and implications for the genetic improvement of plants. Plant Physiol. 110:3–13.CrossrefGoogle Scholar

  • Chen, C.L. (1992) Nitrobenzene and cupric oxide oxidations of lignin in solution. In: Methods in Lignin Chemistry. Eds. Lin, S.Y., Dence, C.W. Springer-Verlag, Berlin (DE). pp. 301–321.Google Scholar

  • Choi, J.W., Faix, O., Meier, D. (2001) Characterization of residual lignins from chemical pulps of spruce (Picea abies L.) and beech (Fagus sylvatica L.) by analytical pyrolysis-gas chromatography/mass spectrometry. Holzforschung 55:185–192.CrossrefGoogle Scholar

  • da Silva-Perez, D., Guillemain, A., Alazard, P., Plomion, C., Rozenberg, P., Rodrigues, J.C., Alves, A., Chantre, G. (2007) Improvement of Pinus pinaster Ait elite trees selection by combining near infrared spectroscopy and genetic tools. Holzforschung 61:611–622.CrossrefWeb of ScienceGoogle Scholar

  • del Rio, J.C., Gutierrez, A., Hernando, M., Landin, P., Romero, J., Martinez, A.T. (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol. 74:110–115.CrossrefGoogle Scholar

  • Faix, O., Böttcher, J.H., Bremer, J. (1993) Rapid characterization of lignocellulosics and lignins using multivariate calibration techniques for analytical pyrolysis and FTIR spectroscopy, II. In: Proceedings of the 7th Int. Symposium on Wood and Pulping Chemistry (ISWPC), Beijing, May 25–28, 1993. pp. 829–836.Google Scholar

  • Fernandes, C., Gaspar, M.J., Pires, J., Alves, A., Simoes, R., Rodrigues, J.C., Silva, M.E., Carvalho, A., Brito, J.E., Lousada, J.L. (2017) Physical, chemical and mechanical properties of Pinus sylvestris wood at five sites in Portugal. IFOREST 10:669–679.Web of ScienceCrossrefGoogle Scholar

  • Godoy, E.A., Rodrigues, J., Alves, A.M.M., Lazo, D.A. (2007) Content and quality study of the lignin by analytical pyrolysis in Pinus caribaea. Maderas-Cienc. Tecnol. 9:179–188.Web of ScienceGoogle Scholar

  • Hedges, J.I., Ertel, J.R. (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation-products. Anal. Chem. 54:174–178.CrossrefGoogle Scholar

  • Lapierre, C. (2010) Determining lignin structure by chemical degradations. In: Lignin and Lignans: Advances in Chemistry. Eds. Heitner, C., Dimmel, D.R.Schmidt, J.A. CRC Press, Boca Raton, FL. pp. 11–48.Google Scholar

  • Lapierre, C., Rolando, C., Monties, B. (1983) Characterization of poplar lignins acidolysis products – capillary gas-liquid and liquid-liquid chromatography of monomeric compounds. Holzforschung 37:189–198.CrossrefGoogle Scholar

  • Lapierre, C., Monties, B., Rolando, C. (1985) Thioacidolysis of lignin – comparison with acidolysis. J. Wood Chem. Technol. 5:277–292.CrossrefGoogle Scholar

  • MacKay, J., Presnell, T., Jameel, H., Taneda, H., O’Malley, D., Sederoff, R. (1999) Modified lignin and delignification with a CAD-deficient loblolly pine. Holzforschung 53:403–410.CrossrefGoogle Scholar

  • Mátyás, C., Ackzell, L., Samuel, C.J.A. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Scots Pine (Pinus sylvestris). International Plant Genetic Resources Institute, Rome, Italy, 2004. pp. 6.Google Scholar

  • Meier, D., Faix, O. (1992) Pyrolysis-Gas Chromatography-Mass Spectrometry. In: Methods in Lignin Chemistry. Eds. Lin, S.Y., Dence, C.W. Springer-Verlag, Berlin. pp. 177–199.Google Scholar

  • Meier, D., Fortmann, I., Odermatt, J., Faix, O. (2005) Discrimination of genetically modified poplar clones by analytical pyrolysis-gas chromatography and principal component analysis. J. Anal. Appl. Pyrol. 74:129–137.CrossrefGoogle Scholar

  • Naes, T., Isaksson, T., Fearn, T., Davies, T. (2002) A User Friendly Guide to Multivariate Calibration and Classification. NIR Publications, Chichester.Google Scholar

  • Pecoraro, E., Pizzo, B., Alves, A., Macchioni, N., Rodrigues, J.C. (2015) Measuring the chemical composition of waterlogged decayed wood by near infrared spectroscopy. Microchem. J. 122:176–188.Web of ScienceCrossrefGoogle Scholar

  • Pepper, J.M., Baylis, P.E.T., Adler, E. (1959) The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Can. J. Chem. 37:1241–1248.CrossrefGoogle Scholar

  • Pizzo, B., Pecoraro, E., Alves, A., Macchioni, N., Rodrigues, J.C. (2015) Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta 131:14–20.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Robinson, A.R., Mansfield, S.D. (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 58:706–714.Web of ScienceCrossrefPubMedGoogle Scholar

  • Rodrigues, J., Meier, D., Faix, O., Pereira, H. (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J. Anal. Appl. Pyrol. 48:121–128.CrossrefGoogle Scholar

  • Rodrigues, J., Graca, J., Pereira, H. (2001) Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. J. Anal. Appl. Pyrol. 58:481–489.Google Scholar

  • Rodrigues, J., Alves, A., Pereira, H., da Silva Perez, D., Chantre, G., Schwanninger, M. (2006) NIR PLSR results obtained by calibration with noisy, low-precision reference values: Are the results acceptable? Holzforschung 60:402–408.CrossrefGoogle Scholar

  • Sarkanen, K.V., Hergert, H.L. (1971) Classification and distribution. In: Lignins: Occurrence, formation, structure and reactions. Eds. Sarkanen, K.V., Ludwig, C.H. Wiley-Interscience, New York. pp. 43–89.Google Scholar

  • Schwanninger, M., Rodrigues, J.C., Gierlinger, N., Hinterstoisser, B. (2011a) Determination of lignin content in Norway spruce wood by Fourier transformed near infrared spectroscopy and partial least squares regression. Part 1: wavenumber selection and evaluation of the selected range. J. Near Infrared Spectrosc. 19:319–329.Web of ScienceCrossrefGoogle Scholar

  • Schwanninger, M., Rodrigues, J.C., Gierlinger, N., Hinterstoisser, B. (2011b) Determination of lignin content in Norway spruce wood by Fourier transformed near infrared spectroscopy and partial least squares regression analysis. Part 2: development and evaluation of the final model. J. Near Infrared Spectrosc. 19:331–341.CrossrefWeb of ScienceGoogle Scholar

  • Schwanninger, M., Rodrigues, J.C., Fackler, K. (2011c) A review of band assignments in near infrared spectra of wood and wood components. J. Near Infrared Spectrosc. 19:287–308.Web of ScienceCrossrefGoogle Scholar

  • Verma, S.R., Dwivedi, U.N. (2014) Lignin genetic engineering for improvement of wood quality: applications in paper and textile industries, fodder and bioenergy production. S. Afr. J. Bot. 91:107–125.Web of ScienceCrossrefGoogle Scholar

  • Wadenbäck, J., Clapham, D., Gellerstedt, G., von Arnold, S. (2004) Variation in content and composition of lignin in young wood of Norway spruce. Holzforschung 58:107–115.CrossrefGoogle Scholar

  • Wadenbäck, J., von Arnold, S., Egertsdotter, U., Walter, M.H., Grima-Pettenati, J., Goffner, D., Gellerstedt, G., Gullion, T., Clapham,D. (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res. 17:379–392.Web of ScienceCrossrefPubMedGoogle Scholar

  • Williams, P.C., Sobering, D.C. (1993) Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds, J. Near Infrared Spectrosc. 1:25–32.CrossrefGoogle Scholar

  • Wu, R.L., Remington, D.L., MacKay, J.J., McKeand, S.E., O’Malley, D.M. (1999) Average effect of a mutation in lignin biosynthesis in loblolly pine. Theor. Appl. Genet. 99:705–710.PubMedCrossrefGoogle Scholar

  • Yamamura, M., Hattori, T., Suzuki, S., Shibata, D., Umezawa, T. (2012) Microscale thioacidolysis method for the rapid analysis of beta-O-4 substructures in lignin. Plant Biotechnol. 29: 419–423.Web of ScienceCrossrefGoogle Scholar

  • Yokoi, H., Nakase, T., Ishida, Y., Ohtani, H., Tsuge, S., Sonoda, T., Ona, T. (2001) Discriminative analysis of Eucalyptus camaldulensis grown from seeds of various origins based on lignin components measured by pyrolysis-gas chromatography. J. Anal. Appl. Pyrol. 57:145–152.CrossrefGoogle Scholar

About the article

Received: 2019-07-17

Accepted: 2019-11-05

Published Online: 2019-12-06


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was supported by the Fundação para a Ciência e a Tecnologia, FCT, through Centro de Estudos Florestais (UID/AGR/00239/2019) and the project PTDC/AGR-CFL/110988/2009. The first author was supported by the FCT – Fundação para a Ciência e a Tecnologia, I.P., through a contract – DL57/2016/CP1382/CT0005. The third author integrates the CITAB research center and acknowledges FCT for the conceded financial support under the project UID/AGR/04033/2019, and COMPETE 2020 with the code POCI-01-0145-FEDER-006958.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190186, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0186.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in