Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Ahead of print


Chemical improvement of surfaces. Part 5: surfactants as structural lead for wood hydrophobization – covalent modification with p-alkylated benzoates

Christian Kaldun
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, D-38678 Clausthal-Zellerfeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Söftje
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, D-38678 Clausthal-Zellerfeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan C. Namyslo
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, D-38678 Clausthal-Zellerfeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dieter E. Kaufmann
  • Corresponding author
  • Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, D-38678 Clausthal-Zellerfeld, Germany
  • Clausthal Centre of Material Technology, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-12-09 | DOI: https://doi.org/10.1515/hf-2019-0196


For a durable improvement of the hydrophobization properties of wood Scots pine (Pinus sylvestris L.) sapwood veneer chips were covalently modified with surfactant-like p-alkylated benzoates and a corresponding 4-cyanophenyl derivative. These esterification reactions of wood hydroxyl groups at varied temperatures and different reaction times afforded weight percent gains (WPG) ranging from 8 to 44% and quantities of covalently bonded organomaterials (QCO) of 0.3–2.6 mmol per gram, respectively. The successful covalent attachment of the functional precursors was proven by attenuated total reflection-infrared spectroscopy (ATR-IR), while the improvement of hydrophobicity was demonstrated by resulting contact angles (CAs) in a range from 113 to 150°.

Keywords: alkylation; attenuated total reflection IR (ATR-IR); contact angle (CA); covalent fixation; esterification; hydrophobization; quantity of covalently bonded organomaterial (QCO)


  • Abdul Khalil, H.P.S., Bakare, I.O., Khairul, A., Issam, A.M., Bhat, I.-ul-Haq. (2011a) Effect of anhydride modification on the thermal stability of cultivated Acacia mangium. J. Wood Chem. Technol. 31:154–171.CrossrefGoogle Scholar

  • Abdul Khalil, H.P.S., Khairul, A., Bakare, I.O., Bhat, I.-ul-Haq. (2011b) Thermal, spectroscopic, and flexural properties of anhydride modified cultivated Acacia spp. Wood Sci. Technol. 45: 597–606.CrossrefGoogle Scholar

  • Arni, P.C., Gray, J.D., Scougall, R.K. (1961) Chemical modification of wood. I. Use of trifluoricacetic anhydride in the esterification of wood by carboxylic acids. J. Appl. Chem. 11:157–169.Google Scholar

  • Çetin, N.S., Ozmen, N. (2001) Dimensional changes in Corsican and Scots Pine sapwood due to reaction with crotonic anhydride. Wood Sci. Technol. 35:257–267.CrossrefGoogle Scholar

  • Chang, H.-T., Chang, S.-T. (2002) Moisture excluding efficiency and dimensional stability of wood improved by acylation. Biores. Technol. 85:201–204.CrossrefGoogle Scholar

  • Chang, H.-T., Chang, S.-T. (2003) Improvements in dimensional stability and lightfastness of wood by butyrylation using microwave heating. J. Wood Sci. 49:455–460.CrossrefGoogle Scholar

  • Dawson, B.S.W., Franich, R.A., Kroese, H.W., Steward, D. (1999) Reactivity of radiata pine sapwood towards carboxylic acid anhydrides. Holzforschung 53:195–198.CrossrefGoogle Scholar

  • Drafz, M.H.H., Dahle, S., Maus-Friedrichs, W., Namyslo, J.C., Kaufmann, D.E. (2012) Chemical improvement of surfaces. Part 2: permanent hydrophobization of wood by covalently bonded fluoroorganyl substituents. Holzforschung 66:727–733.CrossrefGoogle Scholar

  • Eastham, G.R., Butler, I. (2008) Novel carbonylation ligands and their use in the carbonylation of ethylenically unsaturated compounds. Lucite International UK Limited, WO002008065448 A1:88.Google Scholar

  • Eranna, P.B., Pandey, K.K. (2012) Solvent-free chemical modification of wood by acetic and butyric anhydride with iodine as catalyst. Holzforschung 66:967–971.CrossrefGoogle Scholar

  • Funakoshi, H., Shiraishi, N., Norimoto, M., Aoki, T., Hayashi, H., Yokota, T. (1979) Studies on the thermoplasticization of wood. Holzforschung 33:159–166.CrossrefGoogle Scholar

  • Grimm, J., Heidebrecht, R.W., Mampreian, D.M., Methot, J.L., Miller, T., Otte, K.M., Peterson, S., Siliphaivanh, P., Wilson, K.J., Witter, D.J. (2009) Silicon derivatives as histone deacetylase inhibitors. Merck & Co., Inc., WO2009/020589 A1:68.Google Scholar

  • Habu, N., Nagasawa, Y., Samejima, M., Nakanishi, T.M. (2006) The effect of substituent distribution on the decay resistance of chemically modified wood. Int. Biodet. Biodeg. 57:57–62.CrossrefGoogle Scholar

  • Hammett, L.P. (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59:96–103.CrossrefGoogle Scholar

  • Hill, C.A.S., Hillier, J.G. (1999) Studies of the reaction of carboxylic acid anhydrides with wood. Experimental determination and modeling of kinetic profiles. Phys. Chem. Chem. Phys. 1:1569–1576.Google Scholar

  • Hill, C.A.S., Jones, D. (1996a) Dimensional changes in Corsican Pine Sapwood due to chemical modification with linear chain anhydrides. Holzforschung 50:457–462.CrossrefGoogle Scholar

  • Hill, C.A.S., Jones, D. (1996b) A chemical kinetics study of the propionic anhydride modification of Corsican Pin. (1) Determination of activation energies. J. Wood Chem. Technol. 16:235–247.CrossrefGoogle Scholar

  • Hill, C.A.S., Jones, D. (1999) The dimensional stabilisation of Corsican Pine Sapwood by reaction with carboxylic acid anhydrides. Holzforschung 53:267–271.Google Scholar

  • Hill, C.A.S., Papadopoulos, A.N., Payne, D. (2004) Chemical modification employed as a means of probing the cell-wall micropore of pine sapwood. Wood Sci. Technol. 37:475–488.CrossrefGoogle Scholar

  • Ishii, Y., Nakano, T. (1997) Oxidation catalytic system and oxidation process using the same. Daicel Chemical Industries Ltd., US5958821 A:24.Google Scholar

  • Ishii, Y., Sakaguchi, S. (1999) A new strategy for alkane oxidation with O2 using N-hydroxyphthalimide (NHPI) as a radical catalyst. Catal. Surv. Jpn. 3:27–35.CrossrefGoogle Scholar

  • Jaffé, H.H. (1953) A reexamination of the Hammett equation. Chem. Rev. 53:191–261.CrossrefGoogle Scholar

  • Jebrane, M., Heinmaa, I. (2015) Covalent fixation of boron in wood through transesterification with vinyl ester of carboxyphenylboronic acid. Holzforschung 70:577–583.Google Scholar

  • Kaldun, C., Dahle, S., Maus-Friedrichs, W., Namyslo, J.C., Kaufmann, D.E. (2016) Chemical improvement of surfaces. Part 4: significantly enhanced hydrophobicity of wood by covalent modification with p-silyl-functionalized benzoates. Holzforschung 70:411–419.Google Scholar

  • Keplinger, T., Cabane, E., Chanana, M., Hass, P., Merk, V., Gierlinger, N., Burgert, I. (2015) A versatile strategy for grafting polymers to cell walls. Acta Biomat. 11:256–263.CrossrefGoogle Scholar

  • Kiryanov, A.A., Seed, A.J., Sampson, P. (2001) Synthesis and stability of 2-(1,1-difluoroalkyl)thiophenes and related 1,1-difluoroalkylbenzenes: fluorinated building block for liquid crystal synthesis. Tetrahedron 57:5757–5767.CrossrefGoogle Scholar

  • Li, J.-Z., Furuno, T., Katoh, S., Uehara, T. (2000) Chemical modification of wood by anhydrides without solvents or catalysts. J. Wood Sci. 46:215–221.CrossrefGoogle Scholar

  • Li, J.-Z., Furuno, T., Katoh, S., Uehara, T. (2001a) Wood propionylation in the presence of catalysts. Wood Fiber Sci. 33:255–263.Google Scholar

  • Li, J.-Z., Furuno, T., Katoh, S. (2001b) Preparation and properties of acetylated and propionylated wood-silicate composites. Holzforschung 55:93–96.Google Scholar

  • Liptáková, E., und Kúdela, J. (1994) Analysis of the wood-wetting process. Holzforschung 48:139–144.CrossrefGoogle Scholar

  • Mohammed-Ziegler, I., Marosi, G., Matkó, S., Hórvölgyi, Z., Tóth, A. (2003) Silylation of wood for potential protection against biodegradation. An ATR-FTIR, ESCA and contact angle study. Polym. Adv. Technol. 14:790–795.CrossrefGoogle Scholar

  • Mohtar, M.A., Hamid, N.H., Sahri, M.H. (2014) Effect of linear chain carboxylic acid anhydrides on physical and mechanical properties of rubber (Hevea brasiliensis), acacia, (Acacia spp.), and oil palm (Tinnera spp.). Woods. J. Composites 2014:1–10.CrossrefGoogle Scholar

  • Morrow, N.R.C.P. (1975) The effects of surface roughness on contact angle with special reference to petroleum recovery. J. Can. Petrol. Technol. 14:42–53.Google Scholar

  • Nakagami, T., Yokota, T. (1975) Esterification of wood with unsaturated carboxylic acids. II: reaction conditions of esterification and properties of the prepared esters of wood. Bull. Kyoto Univers. Forests 47:178–183.Google Scholar

  • Nakagami, T., Yokota, T. (1979) Grafting of styrene onto methacrylated woods. Bull. Kyoto Univers. Forests 51:274–284.Google Scholar

  • Nakagami, T., Amimoto, H., Yokota, T. (1974) Esterification of wood with unsaturated carboxylic acids. I: preparation of several wood-esters by the TFAA method. Bull. Kyoto Univers. Forests 46:217–224.Google Scholar

  • Nakano, T. (1994) Mechanism of thermoplasticity for chemically-modified wood. Holzforschung 48:318–324.CrossrefGoogle Scholar

  • Namyslo, J.C., Kaufmann, D.E. (2009) Chemical improvement of surfaces. Part 1: novel functional modification of wood with covalently bound organoboron compounds. Holzforschung 63:627–632.Google Scholar

  • Namyslo, J.C., Kaufmann, D.E., Mai, C.M., Militz, H. (2015) Chemical improvement of surfaces. Part 3: bioresistance of covalently functionalized wood bearing boronate-, silyl-, and amino-substituted benzoyl derivatives. Holzforschung 69:595–601.Google Scholar

  • Papadopoulos, A.N., Hill, C.A.S. (2002) The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana. Holz Roh Werkst. 60:329–332.CrossrefGoogle Scholar

  • Papadopoulos, A.N., Hill, C.A.S. (2003) The sorption of water vapour by anhydride modified softwood. Wood Sci. Technol. 37:221–231.CrossrefGoogle Scholar

  • Papadopoulos, A.N., Pougioula, G. (2010) Mechanical behaviour of pine wood chemically modified with a homologous series of linear chain carboxylic acid anhydrides. Biores. Technol. 101:6147–6150.CrossrefGoogle Scholar

  • Papadopoulos, A.N., Avtzis, D.N., Avtzis, N.D. (2008a) The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against the subterranean termites Reticulitermes flavipes. Holz Roh Werkst. 66:249–252.CrossrefGoogle Scholar

  • Papadopoulos, A.N., Duquesnoys, P., Cragg, S.M., Pitman, A.J. (2008b) The resistance of wood modified with linear chain carboxylic acid anhydrides to attack by the marine wood borer Limnoria quadripunctata Holthius. Int. Biodet. Biodeg. 61:199–202.CrossrefGoogle Scholar

  • Papadopoulos, A.N., Pfeffer, A., Militz, H. (2011) Durability of pine wood modified with a series of linear chain carboxylic acid anhydrides against soft rot fungi. Wood Res. 56:147–156.Google Scholar

  • Risi, J., Arseneau, D.F. (1957) Dimensional stabilization of wood: Part II. Crotonylation and crotylation. Forest Prod. J. 7:245–246.Google Scholar

  • Rodrìguez-Valverde, M.A., Cabrerizo-Vilchez, M.A., Rosales- López, P., Páez-Duenas, A., Hidalgo-Álvarez, R. (2002) Contact angle measurements on two (wood and stone) non-ideal surfaces. Colloids Surf. A: Physicochem. Eng. Aspects 206:485–495.CrossrefGoogle Scholar

  • Shiraishi, N., Matsunaga, T., Yokota, T. (1979) Thermal softening and melting of esterified wood prepared in an N2O4–DMF cellulose solvent medium. J. Appl. Polym. Sci. 24:2361–2368.CrossrefGoogle Scholar

  • Thiebaud, S., Borredon, M.E. (1995) Solvent-free wood esterification with fatty acid chlorides. Biores. Technol. 52:169–173.CrossrefGoogle Scholar

  • Thiebaud, S., Borredon, M.E., Baziard, G., Senocq, F. (1997) Properties of wood esterified by fatty-acid chlorides. Biores. Technol. 59:103–107.CrossrefGoogle Scholar

  • Shorter, J. (1985) Die Hammett-Gleichung – und was daraus in fünfzig Jahren wurde. Chem. unserer Zeit 19:197–208.CrossrefGoogle Scholar

  • Stamm, A.J., Tarkow, H. (1947) Dimensional stabilization of wood. J. Phys. Colloid Sci. 51:493–505.CrossrefGoogle Scholar

  • Verma, P., Junga, U., Militz, M., Mai, C. (2009) Protection mechanisms of DMDHEU treated wood agaings white and brown rot fungi. Holzforschung 63:371–378.Google Scholar

  • Wålinder, M.E.P., Gardner, D.J. (2002) Factors influencing the determination of wood contact angles and wettability – extractives contamination, wicking and bulk sorption effects. Contact Angle Wettab. Adh. 2:215–238.Google Scholar

About the article

Received: 2019-08-03

Accepted: 2019-10-21

Published Online: 2019-12-09

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was financially supported by Clausthal University of Technology, Germany.

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20190196, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0196.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in