Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology

Holzforschung

Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi


IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

Online
ISSN
1437-434X
See all formats and pricing
More options …
Ahead of print

Issues

Contribution of lignin to the stress transfer in compression wood viewed by tensile FTIR loading

Hui Peng
  • Research Institute of Wood Industry of Chinese Academy of Forestry, Hunan Collaborative Innovation Center for Effective Utilizing of Wood and Bamboo Resources, Beijing 100091, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lennart Salmén / Jiali Jiang
  • Research Institute of Wood Industry of Chinese Academy of Forestry, Hunan Collaborative Innovation Center for Effective Utilizing of Wood and Bamboo Resources, Beijing 100091, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jianxiong Lu
  • Corresponding author
  • Research Institute of Wood Industry of Chinese Academy of Forestry, Hunan Collaborative Innovation Center for Effective Utilizing of Wood and Bamboo Resources, Beijing 100091, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-11-13 | DOI: https://doi.org/10.1515/hf-2019-0206

Abstract

To achieve efficient utilization of compression wood (CW), a deeper insight into the molecular interactions is necessary. In particular, the role of lignin in the wood needs to be better understood, especially concerning how lignin contributes to its mechanical properties. For this reason, the properties of CW and normal wood (NW) from Chinese fir (Cunninghamia lanceolata) have been studied on a molecular scale by means of polarized Fourier transform infrared (FTIR) spectroscopy, under both static and dynamic loading conditions. Under static tensile loading, only molecular deformations of cellulose were observed in both CW and NW. No participation of lignin could be detected. In relation to the macroscopic strain, the molecular deformation of the cellulose C-O-C bond was greater in NW than in CW as a reflection of the higher microfibril angle and the lower load taken up by CW. Under dynamic deformation, a larger contribution of the lignin to stress transfer was detected in CW; the molecular deformation of the lignin being highly related to the amplitude of the applied stress. Correlation analysis indicated that there was a direct coupling between lignin and cellulose in CW, but there was no evidence of such a direct coupling in NW.

This article offers supplementary material which is provided at the end of the article.

Keywords: cellulose; compression wood; FTIR; lignin; mechanical properties; polymer interaction; softwood

References

  • Altaner, C.M., Thomas, L.H., Fernandes, A.N., Jarvis, M.C. (2014) How cellulose stretches: synergism between covalent and hydrogen bonding. Biomacromolecules 15:791–798.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Bergander, A., Salmén, L. (2002) Cell wall properties and their effects on the mechanical properties of fibers. J. Mater. Sci. 37:151–156.CrossrefGoogle Scholar

  • Brémaud, I., Ruelle, J., Thibaut, A., Thibaut, B. (2013) Changes in viscoelastic vibrational properties between compression and normal wood: roles of microfibril angle and of lignin. Holzforschung 67:75–85.Web of ScienceCrossrefGoogle Scholar

  • Burgert, I., Frühmann, K., Keckes, J., Fratzl, P., Stanzl-Tschegg, S. (2004) Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level. Trees 18:480–485.Google Scholar

  • Burgert, I., Eder, M., Gierlinger, N., Fratzl, P. (2007) Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226:981–987.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Eichhorn, S.J., Sirichaisit, J., Young, R. (2001) Deformation mechanisms in cellulose fibres, paper and wood. J. Mater. Sci. 36:3129–3135.CrossrefGoogle Scholar

  • Fagerstedt, K.V., Mellerowicz, E., Gorshkova, T., Ruel, K., Joseleau, J.-P. (2014) Cell wall polymers in reaction wood. In: The Biology of Reaction Wood. Eds. Gardiner, B., Barnett, J., Saranpää, P., Gril, J. Springer, Berlin. pp. 37–106.Google Scholar

  • Fratzl, P., Burgert, I., Keckes, J. (2004) Mechanical model for the deformation of the wood cell wall. Zeitsch. Metallkunde 95:579–584.Google Scholar

  • Gierlinger, N. (2018) New insights into plant cell walls by vibrational microspectroscopy. Appl. Spectrosc. Rev. 53:517–551.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Gierlinger, N., Schwanninger, M., Reinecke, A., Burgert, I. (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081.PubMedCrossrefGoogle Scholar

  • Gindl, W. (2002) Comparing mechanical properties of normal and compression wood in Norway Spruce: the role of lignin in compression parallel to the grain. Holzforschung 56:395–401.CrossrefGoogle Scholar

  • Gindl, W., Teischinger, A. (2003) Comparison of the TL-shear strength of normal and compression wood of European larch. Holzforschung 57:421–426.CrossrefGoogle Scholar

  • Guo, F., Altaner, C.M. (2018) Molecular deformation of wood and cellulose studied by near infrared spectroscopy. Carbohydr. Polym. 197:1–8.Web of ScienceCrossrefPubMedGoogle Scholar

  • Hofstetter, K., Hinterstoisser, B., Salmén, L. (2006) Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13:131–145.CrossrefGoogle Scholar

  • Kutsuki, H., Higuchi, T. (1981) Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia. Planta 152:365–368.PubMedCrossrefGoogle Scholar

  • Lindh, E.L., Salmén, L. (2017) Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 24:21–33.Web of ScienceCrossrefGoogle Scholar

  • Lindh, E.L., Terenzi, C., Salmén, L., Furó, I. (2017) Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. Phys. Chem. Chem. Phys. 19:4360–4369.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Noda, I. (1990) Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Appl. Spectrosc. 44:550–561.CrossrefGoogle Scholar

  • Noda, I., Dowrey, A.E., Marcott, C. (1988) Two-dimensional infrared (2D IR) spectroscopy. A new tool for interpreting infrared spectra. Mikrochim. Acta (Wien) 1:101–103.Google Scholar

  • Olsson, A.M., Salmén, L. (2001) Molecular mechanisms involved in creep phenomena of paper. J. Appl. Polym. Sci. 79:1590–1595.CrossrefGoogle Scholar

  • Önnerud, H. (2003) Lignin structures in normal and compression wood. Evaluation by thioacidolysis using ethanethiol and methanethiol. Holzforschung 57:377–384.CrossrefGoogle Scholar

  • Page, D., El-Hosseiny, F. (1983) The mechanical properties of single wood pulp fibres. Part VI. Fibril angle and the shape of the stress–strain curve. J. Pulp Pap. Sci., Trans. Technol. Sect. 9:TR99–100.Google Scholar

  • Peng, H., Salmén, L., Stevanic, J.S., Lu, J. (2019) Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. Planta 250:163–171.CrossrefWeb of ScienceGoogle Scholar

  • Reiterer, A., Lichtenegger, H., Tschegg, S., Fratzl, P. (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Phil. Magazine A 79:2173–2184.CrossrefGoogle Scholar

  • Sakakibara, A. (1980) A structural model of softwood lignin. Wood Sci. Technol. 14:89–100.CrossrefGoogle Scholar

  • Salmén, L., Bergström, E. (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16:975–982.CrossrefWeb of ScienceGoogle Scholar

  • Salmén, L., Stevanic, J.S., Olsson, A.-M. (2016) Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung 70:1155–1163.Web of ScienceCrossrefGoogle Scholar

  • Sharma, M., Altaner, C.M. (2014) Properties of young Araucaria heterophylla (Norfolk Island pine) reaction and normal wood. Holzforschung 68:817–821.CrossrefWeb of ScienceGoogle Scholar

  • Stevanic, J.S., Salmén, L. (2006) The primary cell wall studied by dynamic 2D FT-IR: interaction among components in Norway spruce (Picea abies). Cell. Chem. Technol. 40:761–767.Google Scholar

  • Stevanic, J.S., Salmén, L. (2008) Characterizing wood polymers in the primary cell wall of Norway spruce [Picea abies (L.) Karst] using dynamic FT-IR spectroscopy. Cellulose 15:285–295.CrossrefWeb of ScienceGoogle Scholar

  • Tarmian, A., Azadfallah, M. (2009) Variation of cell features and chemical composition in spruce consisting of opposite, normal and compression wood. BioResources 41:194–204.Google Scholar

  • Tashiro, K., Kobayashi, M. (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526.CrossrefGoogle Scholar

  • Timell, T.E. (1973) Studies on opposite wood in conifers. Part I: Chemical composition. Wood Sci. Technol. 7:1–5.CrossrefGoogle Scholar

  • Timell, T.E. (1982) Recent progress in the chemistry and topochemistry of compression wood. Wood Sci. Technol. 16:83–122.CrossrefGoogle Scholar

  • Timell, T.E. Compression Wood in Gymnosperms. Springer, Berlin, 1986.Google Scholar

About the article

Received: 2019-08-14

Accepted: 2019-10-22

Published Online: 2019-11-13


Funding Source: National Key Research and Development Program of China

Award identifier / Grant number: 2017YFD0600202

This research was sponsored by the National Key Research and Development Program of China (2017YFD0600202). Hui Peng has a fellowship from the China Scholarship Council (CSC).


Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Employment or leadership: None declared.

Honorarium: None declared.


Citation Information: Holzforschung, 20190206, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0206.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in