Jump to ContentJump to Main Navigation
Show Summary Details
More options …
Wood Research and Technology


Cellulose – Hemicelluloses – Lignin – Wood Extractives

Editor-in-Chief: Salmén, Lennart

Editorial Board: Daniel, Geoffrey / Militz, Holger / Rosenau, Thomas / Sixta, Herbert / Vuorinen, Tapani / Argyropoulos, Dimitris S. / Balakshin, Yu / Barnett, J. R. / Burgert, Ingo / Rio, Jose C. / Evans, Robert / Evtuguin, Dmitry V. / Frazier, Charles E. / Fukushima, Kazuhiko / Gindl-Altmutter, Wolfgang / Glasser, W. G. / Holmbom, Bjarne / Isogai, Akira / Kadla, John F. / Koch, Gerald / Lachenal, Dominique / Laine, Christiane / Mansfield, Shawn D. / Morrell, J.J. / Niemz, Peter / Potthast, Antje / Ragauskas, Arthur J. / Ralph, John / Rice, Robert W. / Salin, Jarl-Gunnar / Schmitt, Uwe / Schultz, Tor P. / Sipilä, Jussi / Takano, Toshiyuki / Tamminen, Tarja / Theliander, Hans / Welling, Johannes / Willför, Stefan / Yoshihara, Hiroshi

IMPACT FACTOR 2018: 2.579

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.829
Source Normalized Impact per Paper (SNIP) 2018: 1.082

See all formats and pricing
More options …
Ahead of print


Study of xylan and cellulose interactions monitored with solid-state NMR and QCM-D

Leandro Coelho Dalvi
  • Corresponding author
  • Celulose Nipo-Brasileira S.A., CENIBRA, Rodovia BR 381, Km 172, Belo Oriente, MG 35196-972, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christiane Laine / Tommi Virtanen / Tiina Liitiä / Tiia-Maria Tenhunen / Hannes Orelma / Tekla Tammelin / Tarja Tamminen
Published Online: 2019-12-09 | DOI: https://doi.org/10.1515/hf-2019-0221


Development of physical properties of bleached eucalyptus kraft pulp is typically based on the refining process. However, many studies have reported that xylan deposition is a viable alternative. As the mechanisms of xylan and cellulose interactions are not clear, the main goal of this study was to achieve a better understanding of these interactions. Considering that a sample of pulp enriched with xylan is a very complex matrix, a model system was developed. Cellulosic thin films were prepared by spincoating and the Langmuir-Schaefer (LS) method from trimethylsilylcellulose (TMSC). Their interactions with xylan were analyzed using the quartz crystal microbalance with dissipation (QCM-D) monitoring technique. The topological changes on cellulose were studied using atomic force microscopy (AFM). For the 13C solid-state nuclear magnetic resonance (NMR) studies, samples were prepared using commercial microcrystalline cellulose (MCC) and xylan. The xylan was extracted from bleached birch kraft pulp using a cold caustic extraction (CCE) method. The QCM-D monitoring showed deposition only with higher concentrations of xylan solution (1 mg · l−1) for the LS method. The AFM images showed that xylan deposits as agglomerates on the cellulose surface, and the NMR experiments showed that there are interactions for the more ordered region of the cellulose fiber and for the less-ordered region.

Keywords: AFM; cellulose; deposition; NMR; QCM-D; xylan


  • Alesiani, M., Proietti, F., Capuani, S., Paci, M., Fioravanti, M., Maraviglia, B. (2005) 13C CPMAS NMR spectroscopic analysis applied to wood characterization. Appl. Magn. Reson. 29:177–185.CrossrefGoogle Scholar

  • Atalla, R.H., Vanderhart, D.L. (1984) Native cellulose: a composite of 2 distinct crystalline forms. Science 223:283–285.CrossrefGoogle Scholar

  • Atalla, R.H., Hackney, J.M., Uhlin, I., Thompson, N.S. (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int. J. Biol. Macromol. 15:109–112.PubMedCrossrefGoogle Scholar

  • Aurell, R. (1965) Increasing kraft pulp yield by redeposition of hemicelluloses. Tappi 48:80–84.Google Scholar

  • Axelsson, S., Croon, I., Enström, B. (1962) Dissolution of hemicelluloses during sulphate pulping. Sven. Papperstidn. 65:693–697.Google Scholar

  • Binnig, G., Quate, C.F., Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56:930–933.CrossrefPubMedGoogle Scholar

  • Bromley, J.R., Busse-Wicher, M., Tryfona, T., Mortimer, J.C., Zhang, Z., Brown, D.M., Dupree, P. (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J. 74:423–434.CrossrefPubMedGoogle Scholar

  • Busse-Wicher, M., Gomes, T.C.F., Tryfona, T., Nikolovski, N., Stott, K., Grantham, N.J., Bolam, D.N., Skaf, M.S., Dupree, P. (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 79:492–506.CrossrefPubMedGoogle Scholar

  • Busse-Wicher, M., Grantham, N.J., Lyczakowski, J.J., Nikolovski, N., Dupree, P. (2016a) Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochem. Soc. Trans. 44:74–78.CrossrefGoogle Scholar

  • Busse-Wicher, M., Li, A., Silveira, R.L., Pereira, C.S., Tryfona, T., Gomes, T.C.F., Skaf, M.S., Dupree, P. (2016b) Evolution of xylan substitution patterns in gymnosperms and angiosperms: implications for xylan interaction with cellulose. Plant Physiol. 171:2418–243.Google Scholar

  • Chen, Q., Xu, S., Liu, Q., Masliyah, J., Xu, Z. (2016) QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci. 233:94–114.CrossrefPubMedGoogle Scholar

  • Clayton, D.W., Phelps, G.R. (1965) The sorption of glucomannan and xylan on α-cellulose wood fibres. J. Polym. Sci. 11:197–220.Google Scholar

  • Cooper, G.K., Sandberg, K.R., Hinck, J.F. (1981) Trimetylsilyl cellulose as precursor to regenerated cellulose fiber. J. Appl. Polym. Sci. 26:3827–3836.CrossrefGoogle Scholar

  • Dahlman, O., Sjöberg, J., Jansson, U.B., Larsson, P.O. (2003) Effects of surface hardwood xylan on the quality of softwood pulps. Nord. Pulp Paper Res J. 18:310–315.CrossrefGoogle Scholar

  • Dahlman, O., Jensen, A., Tormund, D., Östlund, J. (2008) Processing of xylan from hardwood spent cooking liquors. In: Conference proceedings from the Nordic Wood Biorefinery Conference, Sweden. pp. 114–119.Google Scholar

  • Danielsson, S., Lindström, M.E. (2005) Influence of birch xylan adsorption during kraft cooking on softwood pulp strength. Nord. Pulp Paper Res. J. 20:436–441.CrossrefGoogle Scholar

  • Derjaguin, B. (1934) Friction and adhesion. IV. The theory of adhesion of small particles. Kolloid-Zeit 69:155–164.Google Scholar

  • Ducker, W.A., Senden, T.J., Pashley, R.M. (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241.CrossrefGoogle Scholar

  • Dupree, R., Simmons, T.J., Mortimer, J.C., Patel, D., Iuga, D., Brown, S.P., Dupree, P. (2015) Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Biochemistry 54:2335–2345.CrossrefGoogle Scholar

  • Dybowski, C., Bai, S. (2006) Solid-state nuclear magnetic resonance. Anal. Chem. 78:3853–3858.PubMedCrossrefGoogle Scholar

  • Eriksson, E., Sjöström, E. (1968) Influence of acidic groups on the physical properties of high-yield pulps. Tappi 51:56–59.Google Scholar

  • Eriksson, E., Samuelson, O., Viale, A. (1963) Adsorption of hemicellulose isolated from sulfite cooking liquors by cellulose fibers. Sven. Papperstidn. 66:403–406.Google Scholar

  • Fatisson, J., Domingos, R.F., Wilkinson, K.J., Tufenkji, N. (2009) Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 25:6062–6069.PubMedCrossrefGoogle Scholar

  • Ghisalberti, E.L., Godfrey, I.M. (1998) Application of nuclear magnetic resonance spectroscopy to the analysis of organic archaeological materials. Stud. Conserv. 43:215–230.Google Scholar

  • Greber, G., Paschinger, O. (1981) Silyl derivatives of cellulose. Das Papier 35:547–554.Google Scholar

  • Hansson, J.-Å. (1970) Sorption of hemicelluloses on cellulose fibres. Part 3. The temperature dependence on sorption of birch xylan and pine glucomannan at kraft pulping conditions. Sven. Papperstidn. 73:49–53.Google Scholar

  • Hansson, J.-Å., Hartler, N. (1969) Sorption of hemicelluloses on cellulose fibres. Part 1. Sorption of xylans. Sven. Papperstidn. 72:521–530.Google Scholar

  • Hult, E.-L., Larsson, P.T., Iversen, T. (2000) A comparative CP/MAS 13CNMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55.CrossrefGoogle Scholar

  • Janzon, R., Puls, J., Saake, B. (2006) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: optimization of extraction parameters and application to different pulps. Holzforschung 60:347–354.CrossrefGoogle Scholar

  • Kleppe, P. (1970) Kraft pulping. Tappi 53:35–47.Google Scholar

  • Kontturi, E., Thune, P.C., Niemantsverdriet, J.W. (2003) Cellulose model surfaces: simplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy. Langmuir 19:5735–5741.CrossrefGoogle Scholar

  • Kontturi, E., Tammelin, T., Österberg, M. (2006) Cellulose-model films and the fundamental approach. Chem. Soc. Rev. 35:1287–1304.PubMedCrossrefGoogle Scholar

  • Korolkov, V.V., Summerfield, A., Murphy, A., Amabilino, D.B., Watanabe, K., Taniguchi, T., Beton, P. (2019) Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy. Nat Commun 10:1537–1545.PubMedCrossrefGoogle Scholar

  • Krogerus, B., Fuhrmann, A. (2009) Isolation of xylan and use as wet end- and binder chemical. In: Conference Proceedings from the 15th International Symposium on Wood, Fibre and Pulping Chemistry, Oslo, Norway, 15–18 June. pp. 110.Google Scholar

  • Laine, C., Kemppainen, K., Kuutti, L., Varhimo, A., Asikainen, S., Grönroos, A., Määttänen, M., Buchert, J., Harlin, A. (2015) Extraction of xylan from wood pulp and brewer’s spent grain. Ind. Crop. Prod. 70:231–237.CrossrefGoogle Scholar

  • Lambert, J.B., Shawl, C.E., Stearns, J.A. (2000) Nuclear magnetic resonance in archaeology. Chem. Soc. Rev. 29:175–182.CrossrefGoogle Scholar

  • Larsson, P.T., Wickholm, K., Iversen, T. (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr. Res. 302:19–25.CrossrefGoogle Scholar

  • Larsson, P.T., Hult, E.-L., Wickholm, K., Pettersson, E., Iversen, T. (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl. Magnet. Resonan. 15:31–40.CrossrefGoogle Scholar

  • Li, J., Zhang, H., Duan, C., Liu, Y., Ni, Y. (2015) Enhancing hemicelluloses removal from a softwood sulfite pulp. Bioresour. Technol. 192:11–16.CrossrefPubMedGoogle Scholar

  • Linder, A., Bergman, R., Bodin, A., Gatenholm, P. (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19:5072–5077.CrossrefGoogle Scholar

  • Lindgren, T., Edlund, U., Iversen, T. (1995) A multivariate characterization of crystal transformations of cellulose. Cellulose 2:273–288.CrossrefGoogle Scholar

  • Maunu, S., Liitiä, T., Kauliomäki, S., Hortling, B., Sundquist, J. (2000) 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7:147–159.CrossrefGoogle Scholar

  • Miao, Q., Chen, L., Huang, L., Tian, C., Zheng, L., Ni, Y. (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour. Technol. 154:109–113.CrossrefPubMedGoogle Scholar

  • Mitikka-Eklund, M. Sorption of Xylans on Cellulose Fibers. University of Jyväskylä, Finland, 1996.Google Scholar

  • Mobarak, F., El-Ashawy, A.E., Fahmy, Y. (1973) Hemicelluloses as additive in papermaking. Part 2. The role of added hemicellulose in situ on paper properties. Cellulose Chem. Technol. 7:325–335.Google Scholar

  • Mocchiuttia, P., Schnella, C.N., Rossia, G.D., Peresinb, M.S., Zanuttinia, M.A., Galvána, M.V. (2016) Cationic and anionic polyelectrolyte complexes of xylan and chitosan. Interaction with lignocellulosic surfaces. Carbohydr. Polym. 150:89–98.Google Scholar

  • Mora, F., Ruel, K., Comtat, J., Joseleau, J.P. (1986) Aspects of native and redeposited xylans at the surface of cellulose microfibrils. Holzforschung. 40:85–91.CrossrefGoogle Scholar

  • Newman, R.H. (1992) Nuclear magnetic resonance study of spatial relationships between chemical components in wood cell walls. Holzforschung 46:205–210.CrossrefGoogle Scholar

  • Newman, R.H. (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52:157–159.Google Scholar

  • Newman, R.H., Hemmingson, J.A. (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–355.CrossrefGoogle Scholar

  • Newman, R.H., Hemmingson, J.A., Suckling, I.D. (1993) Carbon-13 nuclear magnetic resonance studies of kraft pulping. Holzforschung 47:234–238.CrossrefGoogle Scholar

  • Paananen, A., Österberg, M., Rutland, M., Tammelin, T., Saarinen, T., Tappura, K., Stenius, P. (2004) Interaction between cellulose and xylan: an atomic force microscope and quartz crystal microbalance study. In: Hemicelluloses: Science and technology. ACS Symposium Series 864. Eds. Gatenholm, P., Tenkanen, M. pp. 269–290.Google Scholar

  • Pournou, A. (2008) Deterioration assessment of waterlogged archaeological lignocellulosic material via 13C CP/MAS NMR. Archaeometry 50:129–141.Google Scholar

  • Ribe, E., Wernersson, F., Theliander, H. (2009) Optimal industrial birch black liquor for xylan sorption. In: Tappi Engineering, Pulping and Environmental Conference, Tappi Press, USA. 19.3.Google Scholar

  • Rodahl, M., Höök, F., Krozer, A., Brzezinski, P., Kasemo, B. (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66:3924–3930.CrossrefGoogle Scholar

  • Santonia, I., Calloneb, E., Sandaka, A., Sandaka, J., Dirèb, S. (2015) Solid-state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydr. Polym. 117:710–721.CrossrefPubMedGoogle Scholar

  • Sauerbrey, G.Z. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Physik 155:206.CrossrefGoogle Scholar

  • Schaub, M., Wenz, G., Wegner, G., Stein, A., Klemm, D. (1993) Ultrathin films of cellulose on silicon wafers. Adv. Mater. 5:919–922.CrossrefGoogle Scholar

  • Schönberg, C., Oksanen, T., Suurnäkki, A., Kettunen, H., Buchert, J. (2001) The importance of xylan for the strength properties of spruce kraft fibres. Holzforschung 55:639–644.CrossrefGoogle Scholar

  • Sihtola, H., Blomberg, L. (1975) Hemicelluloses precipitated from steeping liquor in the viscose process as additives in papermaking. Cell. Chem. Technol. 9:555–560.Google Scholar

  • Simonson, R. (1963) The hemicellulose in the sulphate pulping process. I. Isolation of hemicellulose fractions from sulphate cooking liquors. Sven. Papperstidn. 66: 839–845.Google Scholar

  • Simmons, T.J., Mortimer, J.C., Bernardinelli, O.D., Pöppler, A., Brown, S.P., Azevedo, E.R., Dupree, R., Dupree, P. (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7:1–9.Google Scholar

  • Sjöström, E. Wood Chemistry, Fundamentals and Applications. Academic Press, New York, 1981.Google Scholar

  • Sjöström, E., Enström, B. (1967) Characterization of acidic polysaccharides isolated from different pulps. Tappi 50:32–36.Google Scholar

  • Soares, M.C.D.S.M. Métodos Alternativos para Deposição de Xilanas em Polpas de Eucalipto. Universidade Federal de Viçosa, Brazil, 2009.Google Scholar

  • Srndovic, J.S. Interactions between Wood Polymers in Wood Cell Walls and Celulose/Hemicellulose Biocomposites. Chalmers University of Technology, Sweden, 2011.Google Scholar

  • Sundberg, A., Sundberg, K., Lillandt, C., Holmbom, B.R. (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord. Pulp Paper Res. J. 11:216–219.CrossrefGoogle Scholar

  • Tammelin, T., Saarinen, T., Österberg, M., Laine, J. (2006) Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13: 519–535.CrossrefGoogle Scholar

  • Tammelin, T., Paananen, A., Österberg, M. (2009) Hemicelluloses at interfaces: some aspects on the interactions In: The Nanoscience and Technology of Renewable Biomaterials, Eds. Lucia, A.L., Rojas, O.J. Wiley-Blackwell Publishing Ltd, West Sussex, UK. pp. 149–172.Google Scholar

  • Thio, B.J.R., Zhou, D., Keller, A.A. (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater. 189:556–563.PubMedCrossrefGoogle Scholar

  • Timell, T.E. (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1:45–70.CrossrefGoogle Scholar

  • Vaaler, D., Ljones, S., Ribe, E., Toven, K., Moe, S. (2002) Effects of hemicellulose stabilisation and raw material on the beatability of softwood kraft pulps. In: 7th EWLP, Åbo Akademi University, Turku, Finland. pp. 147–150.Google Scholar

  • Van der Hart, D.L., Atalla, R.H. (1984) Studies of microstructures in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472.CrossrefGoogle Scholar

  • Wickholm, K., Larsson, P.T., Iversen, T. (1998) Assignment of noncrystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr. Res. 312:123–129.CrossrefGoogle Scholar

  • Yllner, S., Enström, B. (1956) Studies of the adsorption of xylan on cellulose fibers during the sulphate cook. Part 1. Sven. Papperstidn. 59:229–232.Google Scholar

About the article

Received: 2019-08-28

Accepted: 2019-11-05

Published Online: 2019-12-09

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was a part of the Academy of Finland’s Flagship Programme under Projects No. 318890 and 318891 (Competence Center for Materials Bioeconomy, FinnCERES).

Employment or leadership: None declared.

Honorarium: None declared.

Citation Information: Holzforschung, 20190221, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2019-0221.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in