Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hungarian Journal of Industry and Chemistry

2 Issues per year

Open Access
Online
ISSN
2450-5102
See all formats and pricing
More options …

Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

András József Tóth
  • Corresponding author
  • Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ágnes Szanyi
  • Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enikő Haaz
  • Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Péter Mizsey
  • Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-26 | DOI: https://doi.org/10.1515/hjic-2016-0003

Abstract

The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD) is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

Keywords: process wastewater; non-ideal mixtures; extractive heterogeneous-azeotropic distillation

REFERENCES

  • [1] Kister, H.: Distillation Design (McGraw-Hill Education, New York) 1992Google Scholar

  • [2] Szabó, L.; Németh, S.; Szeifert, F.: Separation of multicomponent mixtures, Hung. J. Ind. Chem., 2011 39(2), 295–300Google Scholar

  • [3] Toth, A.J.; Gergely, F.; Mizsey, P.: Physicochemical treatment of pharmaceutical wastewater: distillation and membrane processes, Per. Pol. Chem. Eng., 2011 55(2), 59–67 DOI 10.3311/pp.ch.2011-2.03CrossrefGoogle Scholar

  • [4] Mizsey, P.; Toth, A.J.: Application of the principles of industrial ecology for the treatment of process waste-waters with physicochemical tools, Indust. Ecol., 2012 1(1), 101–125Google Scholar

  • [5] Mizsey, P.; Szanyi, A.; Raab, A.; Manczinger, J.; Fonyo, Z.: Intensification of a solvent recovery technology through the use of hybrid equipment, Comp. Aided Chem. Eng., 2002 10(1), 121–126 10.1016/S1570-7946(02)80048-7Google Scholar

  • [6] Szanyi, A.; Mizsey, P.; Fonyo, Z.: Novel hybrid separation processes for solvent recovery based on positioning the extractive heterogeneous-azeotropic distillation, Chem. Eng. Proc., 2004 43(3), 327–338 DOI 10.1016/S0255-2701(03)00132-6CrossrefGoogle Scholar

  • [7] Szanyi, A.; Mizsey, P.; Fonyo, Z.: Optimisation of nonideal separation structures based on extractive heterogeneous azeotropic distillation, Ind. Eng. Chem. Res., 2004 43(26), 8269–8274 DOI 10.1021/ie049575lCrossrefGoogle Scholar

  • [8] Szanyi, A.; Mizsey, P.; Fonyo, Z.: Separation of highly non-ideal quaternary mixtures with extractive heterogeneous-azeotropic distillation, Chem. Biochem. Eng. Q., 2005 19(2), 111–121Google Scholar

  • [9] Szanyi, A.: Separation of non-ideal quaternary mixtures with novel hybrid processes based on extractive heterogeneous-azeotropic distillation (PhD Dissertation, BME, Budapest) 2005Google Scholar

  • [10] Franke, M.; Gorak, A.; Strube, J.: Design and optimisation of hybrid separation processes, Chem. Eng. Tech., 2004 76(3), 199–210 DOI 10.1002/cite.200406150CrossrefGoogle Scholar

  • [11] Skiborowski, M.; Harwardt, A.; Marquardt, W.: Conceptual design of distillation-based hybrid separation processes, Annu. Rev. Chem. Biomol. Eng., 2013 4(1), 45–68 DOI 10.1146/annurev-chembioeng-061010-114129CrossrefGoogle Scholar

  • [12] Skiborowski, M.; Harwardt, A.; Marquardt, W.: Conceptual Design of Azeotropic distillation processes (in Eds.: Gorak, A.; Sorensenm, E.; Distillation: Fundamentals and principles, Academic Press, Aachen, Germany) 2014, Chapter 8, p. 321Google Scholar

  • [13] Wijesinghe, A.M.J.C.: Development of industrial complexes of special rectification techniques for solvent recovery (PhD dissertation, Lomonosov Institute of Fine Chemical Engineering, Moscow) 1985Google Scholar

  • [14] Raab, A.: Separation of highly non-ideal mixtures for solvent recovery (MSc Thesis, BME, Budapest) 2001Google Scholar

  • [15] Abrams, D.S.; Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems, AIChE J., 1975 21(1), 116–128 DOI 10.1002/aic.690210115CrossrefGoogle Scholar

  • [16] Egner, K.; Gaube, J.; Pfennig, A.: GEQUAC, an excess Gibbs energy model describing associating and non-associating liquid mixtures by a new model concept for functional groups, Fluid Phase Equilib., 1999 158–160, 381–389 DOI 10.1016/S0378-3812(99)00137-5CrossrefGoogle Scholar

  • [17] Klamt, A.; Krooshof, G.J.P.; Taylor, R.: COSMOSPACE: Alternative to conventional activity-coefficient models, AIChE J., 2002 48(10), 2332–2349 DOI 10.1002/aic.690481023CrossrefGoogle Scholar

  • [18] Wiśniewska-Goclowska, B.; Malanowski, S.X.K.: A new modification of the UNIQUAC equation including temperature dependent parameters, Fluid Phase Equilib., 2001 180(1–2), 103–113 DOI 10.1016/S0378-3812(00)00514-8CrossrefGoogle Scholar

  • [19] Fredenslund, A.; Jones, R.L.; Prausnitz, J.M.: Group-contribution estimation of activity coefficients in non-ideal liquid mixtures, AIChE J., 1975 21(6), 1086–1099 DOI 10.1002/aic.690210607CrossrefGoogle Scholar

  • [20] Akita, K.; Yoshida, Y.: Phase-equilibria in methanol-ethyl acetate-water system, J. Chem. Eng. Data, 1963 8(1), 484–490 DOI 10.1021/je60019a003CrossrefGoogle Scholar

  • [21] Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K.: Azeotropic data (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany) 1994Google Scholar

  • [22] Gmehling, J.; Onken, U.; Rarey-Nies, J. R.: Vapor-liquid equilibrium data collection (Dechema, Virginia, USA) 1978Google Scholar

  • [23] Marsden, C.: Solvents And Allied Substances Manual With Solubility Chart (Cleaver-Hume and Elsevier, London) 1954Google Scholar

About the article

Published Online: 2016-10-26

Published in Print: 2016-10-01


Citation Information: Hungarian Journal of Industry and Chemistry, ISSN (Online) 2450-5102, ISSN (Print) 0133-0276, DOI: https://doi.org/10.1515/hjic-2016-0003.

Export Citation

© 2016 András József Tóth et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in