Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

4 Issues per year


CiteScore 2016: 2.15

SCImago Journal Rank (SJR) 2015: 0.432
Source Normalized Impact per Paper (SNIP) 2015: 0.334

Online
ISSN
1868-1891
See all formats and pricing
More options …
Volume 15, Issue 1

Issues

Pregnancy, obesity and insulin resistance: maternal overnutrition and the target windows of fetal development

Beverly S. Muhlhausler
  • Corresponding author
  • FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, South Australia, Australia
  • Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jessica R. Gugusheff
  • FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, South Australia, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhi Yi Ong
  • FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, South Australia, Australia
  • Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mini A. Vithayathil
  • FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, South Australia, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-10 | DOI: https://doi.org/10.1515/hmbci-2013-0029

Abstract

A substantial body of literature has demonstrated that the nutritional environment an individual experiences before birth or in early infancy is a key determinant of their health outcomes across the life course. This concept, the developmental origins of health and disease (DOHaD) hypothesis, was initially focused on the adverse consequences of exposure to a suboptimal nutrient supply and provided evidence that maternal undernutrition, fetal growth restriction, and low birth weight were associated with heightened risk of central adiposity, insulin resistance, and cardiovascular disease. More recently, the epidemic rise in the incidence of maternal obesity has seen the attention of the DOHaD field turn toward identifying the impact on the offspring of exposure to an excess nutrient supply in early life. The association between maternal obesity and increased risk of obesity in the offspring has been documented in human populations worldwide, and animal models have provided critical insights into the biological mechanisms that drive this relationship. This review will discuss the important roles that programming of the adipocyte and programming of the central neural networks which control appetite and reward play in the early life programming of metabolic disease by maternal overnutrition. It will also highlight the important research gaps and challenges that remain to be addressed and provide a personal perspective on where the field should be heading in the coming 5–10 years.

Keywords: adipose tissue; appetite; fatty acids; fetal programming; maternal nutrition

References

  • 1.

    Rkhzay-Jaf J, O′Dowd JF, Stocker CJ. Maternal obesity and the fetal origins of the metabolic syndrome. Curr Cardiovasc Risk Rep 2012;6:487–95.Google Scholar

  • 2.

    Poston L. Intergenerational transmission of insulin resistance and type 2 diabetes. Prog Biophys Mol Biol 2011;106:315–22.PubMedGoogle Scholar

  • 3.

    Barker DJ. The fetal and infant origins of adult disease. Eur J Clin Inves 1995;25:457–63.CrossrefGoogle Scholar

  • 4.

    Dodd JM, Grivell RM, Nguyen AM, Chan A, Robinson JS. Maternal and perinatal health outcomes by body mass index category. Aust NZ J Obstet Gynecol 2011;51:136–40.Google Scholar

  • 5.

    Moran LJ, Sui Z, Cramp CS, Dodd JM. A decrease in diet quality occurs during pregnancy in overweight and obese women which is maintained post-partum. Int J Obes 2012;37:704–11.Google Scholar

  • 6.

    Catalano PM. Management of obesity in pregnancy. Obstet Gynecol 2007;109:419–33.PubMedCrossrefGoogle Scholar

  • 7.

    Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord 1999;23(Suppl 8):S1–S107.PubMedGoogle Scholar

  • 8.

    Fowden A. Nutrient requirements for normal fetal growth and metabolism. In: Hanson M, Spencer J, Rodeck C, editors. Fetus and neonate: physiology and clinical applications. 1 ed. Cambridge: Cambridge University Press, 1995:31–56.Google Scholar

  • 9.

    Catalano PM, Kirwan JP, Haugel-de Mouzon S, King J. Gestational diabetes and insulin resistance: role in short- and long-term implications for mother and fetus. J Nutr 2003;133:1674S–83.Google Scholar

  • 10.

    Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol 2003;189:1698–704.Google Scholar

  • 11.

    McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, Grove KL. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 2009;119:323–35.Google Scholar

  • 12.

    Retnakaran R, Hanley AJ, Raif N, Connelly PW, Sermer M, Zinman B. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab 2003;88:3507–12.PubMedCrossrefGoogle Scholar

  • 13.

    Shankar K, Zhong Y, Kang P, Lau F, Blackburn ML, Chen J-R, Borengasser SJ, Ronis MJ, Badger TM. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology 2011;152:4158–70.Google Scholar

  • 14.

    Frias AE, Grove KL. Obesity: a transgenerational problem linked to nutrition during pregnancy. Semin Reprod Med 2012;30:472–8.PubMedGoogle Scholar

  • 15.

    Frias AE, Morgan TK, Evans AE, Rasanen J, Oh KY, Thornburg KL, Grove KL. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 2011;152:2456–64.Google Scholar

  • 16.

    Plagemann A, Harder T, Kohlhoff R, Rhode W, Dorner G. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obes Relat Metab Disord 1997;21:451–6.CrossrefPubMedGoogle Scholar

  • 17.

    Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES, Richards GE, Metzger BE. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991;40(Suppl 2):121–5.CrossrefPubMedGoogle Scholar

  • 18.

    Catalano PM, Ehrenberg HM. The short and long term implications of maternal obesity on the mother and her offspring. Int J Obstet Gynaecol 2006;113:1126–33.CrossrefGoogle Scholar

  • 19.

    Metzger BE. Biphasic effects of maternal metabolism on fetal growth: quintessential expression of fuel-mediated teratogenesis. Diabetes 1991;40(Suppl. 2):99–105.PubMedCrossrefGoogle Scholar

  • 20.

    Dickinson JE, Meyer BA, Chmielowiec S, Palmer RM. Streptozocin-induced diabetes mellitus in the pregnant ewe. Am J Obstet Gynecol 1991;165:1673–7.Google Scholar

  • 21.

    Muhlhausler BS, Roberts CT, McFarlane JR, Kauter KG, McMillen IC. Fetal leptin is a signal of fat mass independent of maternal nutrition in ewes fed at or above maintenance energy requirements. Biol Reprod 2002;67:493–9.PubMedCrossrefGoogle Scholar

  • 22.

    Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC. Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 2006;20:1257–9.CrossrefPubMedGoogle Scholar

  • 23.

    Muhlhausler BS, Adam CL, Marrocco EM, Findlay PA, Roberts CT, McFarlane JR, Kauter KG, McMillen IC. Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation. J Physiol 2005;565:185–95.Google Scholar

  • 24.

    Stevens D, Alexander G, Bell AW. Effect of prolonged glucose infusion into fetal sheep on body growth, fat deposition and gestation length. J Dev Physiol 1990;13:277–81.Google Scholar

  • 25.

    Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 2004;561:355–77.Google Scholar

  • 26.

    Muhlhausler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity: the brain. Organogenesis 2008;4:144–52.PubMedCrossrefGoogle Scholar

  • 27.

    Muhlhausler B, Smith SR. Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab 2009;20:51–7.CrossrefPubMedGoogle Scholar

  • 28.

    Kasser TR, Martin RJ, Allen CE. Effect of gestational alloxan diabetes and fasting on fetal lipogenesis and lipid deposition in pigs. Biol Neonate 1981;40:105–12.PubMedCrossrefGoogle Scholar

  • 29.

    Muhlhausler BS, Duffield JA, McMillen IC. Increased maternal nutrition stimulates peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}), adiponectin and leptin mRNA expression in adipose tissue before birth. Endocrinology 2007;148:878–85.Google Scholar

  • 30.

    Muhlhausler BS, Duffield JA, McMillen IC. Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology 2007;148:6157–63.Google Scholar

  • 31.

    Hausman DB, Hausman GJ, Martin RJ. Metabolic development of liver and adipose tissue in pre-obese and control pig fetuses. Int J Obes 1991;15:243–50.PubMedGoogle Scholar

  • 32.

    Bayol SA, Simbi BH, Bertrand JA, Stickland NC. Offspring from mothers fed a ′junk food′ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 2008;586:3219–30.Google Scholar

  • 33.

    Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol 2007;92:287–98.PubMedCrossrefGoogle Scholar

  • 34.

    Plagemann A, Harder T, Rake A, Waas T, Melchior K, Ziska T, Rohde W. Dorner G. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol 1999;11:541–6.PubMedGoogle Scholar

  • 35.

    Kirk SL, Samuelsson A-M, Argenton M, Dhonye H, Kalamatianos T, Poston L, Taylor PD, Coen CW. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One 2009;4:e5870.CrossrefGoogle Scholar

  • 36.

    Oscai LB, Brown MM, Miller WC. Effect of dietary fat on food intake, growth and body composition in rats. Growth 1984;48:415–24.PubMedGoogle Scholar

  • 37.

    Plagemann A, Harder T, Rake A, Melchior K, Rohde W, Dorner G. Increased number of galanin-neurons in the paraventricular hypothalamic nucleus of neonatally overfed weanling rats. Brain Res 1999;818:160–3.Google Scholar

  • 38.

    Plagemann A, Harder T, Janert U, Rake A, Rittel F, Rohde W, Dorner G. Malformations of hypothalamic nuclei in hyperinsulinemic offspring of rats with gestational diabetes. Dev Neurosci 1999;21:58–67.CrossrefPubMedGoogle Scholar

  • 39.

    Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dorner G. Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. Neuroreport 1999;10:3211–316.PubMedCrossrefGoogle Scholar

  • 40.

    Bayol SA, Farrington SJ, Stickland NC. A maternal ′junk food′ diet in pregnancy and lactation promotes an exacerbated taste for ′junk food′ and a greater propensity for obesity in rat offspring. Br J Nutr 2007;98:843–51.PubMedGoogle Scholar

  • 41.

    Plagemann A, Harder T, Rake A, Janert U, Melchior K, Rohde W, Dorner G. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int J Dev Neurosci 1999;17:37–44.CrossrefPubMedGoogle Scholar

  • 42.

    Bouret SG, Simerly RB. Minireview: leptin and development of hypothalamic feeding circuits. Endocrinology 2004b;145:2621–6.Google Scholar

  • 43.

    Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004;304:108–10.Google Scholar

  • 44.

    Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci 2004;24:2797–805.CrossrefGoogle Scholar

  • 45.

    Ong ZY, Muhlhausler BS. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J 2011;25:2167–79.PubMedCrossrefGoogle Scholar

  • 46.

    Mennella JA, Beauchamp GK. Flavor experiences during formula feeding are related to preferences during childhood. Early Hum Dev 2002;68:71–82.CrossrefGoogle Scholar

  • 47.

    Erlanson-Albertsson C. How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol 2005;97:61–73.CrossrefGoogle Scholar

  • 48.

    Dum J, Gramsch C, Herz A. Activation of hypothalamic beta-endorphin pools by reward induced by highly palatable food. Pharmacol Biochem Behav 1983;18:443–7.CrossrefGoogle Scholar

  • 49.

    Figlewicz DP, Benoit SC. Insulin, leptin, and food reward: update 2008. Am J Physiol Regul Integr Comp Physiol 2009;296:R9–19.Google Scholar

  • 50.

    Ong ZY, Wanasuria AF, Lin MZ, Hiscock J, Muhlhausler BS. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system. Appetite 2013;65:189–99.CrossrefGoogle Scholar

  • 51.

    Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry 2004;12:305–20.CrossrefGoogle Scholar

  • 52.

    Kuschel C. Managing drug withdrawal in the newborn infant. Semin Fetal Neonatal Med 2007;12:127–33.Google Scholar

  • 53.

    Yates WR, Cadoret RJ, Troughton EP, Stewart M, Giunta TS. Effect of fetal alcohol exposure on adult symptoms of nicotine, alcohol, and drug dependence. Alcohol Clin Exp Res 1998;22:914–20.CrossrefGoogle Scholar

  • 54.

    Barbier E, Houchi H, Warnault V, Pierrefiche O, Daoust M, Naassila M. Effects of prenatal and postnatal maternal ethanol on offspring response to alcohol and psychostimulants in Long Evans rats. Neuroscience 2009;161:427–40.Google Scholar

  • 55.

    Kelley BM, Middaugh LD. Ethanol self-administration and motor deficits in adults C57BL/6J mice exposed prenatally to cocaine. Pharmacol Biochem Behav 1996;55:575–84.Google Scholar

  • 56.

    Naef L, Srivastava L, Gratton A, Hendrickson H, Owens SM, Walker CD. Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology 2008;197:83–94.Google Scholar

  • 57.

    Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010;151:4756–64.Google Scholar

  • 58.

    Gugusheff JR, Ong ZY, Muhlhausler BS. A maternal “junk-food” diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning. FASEB J. 2013;27:1275–84.CrossrefGoogle Scholar

  • 59.

    Teegarden SL, Bale TL. Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 2007;61:1021–9.CrossrefPubMedGoogle Scholar

  • 60.

    Vucetic Z, Kimmel J, Reyes TM. Chronic high-fat diet drives postnatal epigenetic regulation of [mu]-opioid receptor in the brain. Endocrinology 2011;151:4756–64.Google Scholar

  • 61.

    Velkoska E, Cole TJ, Morris MJ. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am J Physiol Endocrinol Metab 2005;288:E1236–43.Google Scholar

  • 62.

    Ong ZY, Muhlhausler BS. Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not female, offspring of ′junk food′-fed rat dams. Acta Physiol. 2013 Jun 8 [Epub ahead of print].Google Scholar

  • 63.

    Li M, Sloboda DM, Vickers MH. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res 2011:592408. Epub 2011/10/05.Google Scholar

  • 64.

    Taylor PD, Khan IY, Lakasing L, Dekou V, O’Brien-Coker I, Mallet AI, Hanson MA, Poston L. Uterine artery function in pregnant rats fed a diet supplemented with animal lard. Exp Physiol 2003;88:389–98.CrossrefGoogle Scholar

  • 65.

    Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 2006;45:203–36.Google Scholar

  • 66.

    Masden L, Koefoed Petersen R, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta 2005;1740:266–86.Google Scholar

  • 67.

    Muhlhausler BS, Cook-Johnson R, James M, Miljkovic D, Duthoit E, Gibson R. Opposing effects of omega-3 and omega-6 long chain polyunsaturated fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat. J Nutr Metab 2010;Epub 2010 Aug 5.Google Scholar

  • 68.

    Muhlhausler BS, Gibson RA, Makrides M. The effect of maternal omega-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactation on body fat mass in the offspring: a systematic review of animal studies. Prostaglandins Leukot Essent Fatty Acids 2011;85:83–8.Google Scholar

  • 69.

    Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, Mohsen-Kanson T, Amri E, Ailhaud G. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res 2010;51:2352–61.CrossrefGoogle Scholar

  • 70.

    Moon RJ, Harvey NC, Robinson SM, Ntani G, Davies JH, Inskip HM, Godfrey KM, Dennison EM, Calder PC, Cooper C; SWS Study Group. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab 2013;98:299–307.CrossrefGoogle Scholar

  • 71.

    Ailhaud G, Guesnet P, Cunnane SC. An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development? Br J Nutr 2008;100:461–70.CrossrefGoogle Scholar

  • 72.

    Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 2013;20:56–61.Google Scholar

  • 73.

    Bergmann RL, Bergmann KE, Haschke-Becher E, Richter R, Dudenhausen JW, Barclay D, Haschke, F. Does maternal docosahexaenoic acid supplementation during pregnancy and lactation lower BMI in late infancy? J Perinat Med 2007;35:295–300.Google Scholar

  • 74.

    Muhlhausler BS, Gibson RA, Makrides M. Effect of long-chain polyunsaturated fatty acid supplementation during pregnancy or lactation on infant and child body composition: a systematic review. Am J Clin Nutr 2010;92:857–63.CrossrefGoogle Scholar

  • 75.

    Dodd J, Crowther C, Robinson J. Dietary and lifestyle interventions to limit weight gain during pregnancy for obese or overweight women: a systematic review. Acta Obstet Gynecol Scand 2008;2:1–5.Google Scholar

  • 76.

    Louie JC, Markovic TP, Perera N, Foote D, Petocz P, Ross GP, Brand-Miller JC. A randomized controlled trial investigating the effects of a low-glycemic index diet on pregnancy outcomes in gestational diabetes mellitus. Diabetes Care 2011;34:2341–6.CrossrefGoogle Scholar

  • 77.

    Hauner H, Vollhardt C, Schneider KT, Zimmermann A, Schuster T, Amann-Gassner U. The impact of nutritional fatty acids during pregnancy and lactation on early human adipose tissue development. Rationale and design of the INFAT study. Ann Nutr Metab 2009;54:97–103.CrossrefGoogle Scholar

About the article

Corresponding author: Dr. Beverly Muhlhausler, FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide 5064, Australia, Phone: +61 8 8313 0848, Fax: +61 8 8303 7135


Received: 2013-06-14

Accepted: 2013-07-02

Published Online: 2013-08-10

Published in Print: 2013-09-01


Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 15, Issue 1, Pages 25–36, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2013-0029.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Stephen Gould and Rania W. Semaan
Journal of Macromarketing, 2014, Volume 34, Number 4, Page 520

Comments (0)

Please log in or register to comment.
Log in