Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.837

See all formats and pricing
More options …
Volume 17, Issue 2


Circulating and adipose tissue matrix metalloproteinases in cardiometabolic risk environments: pathophysiological aspects

Gabriela Berg
  • Corresponding author
  • Laboratory of Lipids and Lipoproteins, Faculty of Pharmacy and Biochemistry, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laura Schreier
  • Laboratory of Lipids and Lipoproteins, Faculty of Pharmacy and Biochemistry, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronica Miksztowicz
  • Laboratory of Lipids and Lipoproteins, Faculty of Pharmacy and Biochemistry, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-28 | DOI: https://doi.org/10.1515/hmbci-2013-0069


Matrix metalloproteinases (MMPs) play an important role during physiological tissue remodeling in embryonic development and angiogenesis, as well as in pathophysiological conditions such as obesity and development and vulnerability of atherosclerotic plaque. Moreover, MMP circulating levels have emerged as potential biomarkers of cardiovascular disease. MMP expression and activity are regulated by different factors such as insulin resistance and obesity. Expanded fat tissue has been demonstrated to be an active organ, where MMPs also exert a role in adipogenesis, angiogenesis, and proliferation of extracellular matrix (ECM). However, the lack of association between adipose tissue and plasma levels of some MMPs, specifically MMP-2 and MMP-9, suggests that this tissue is not a major contributor to circulating gelatinases. MMPs are also co-expressed or co-repressed in response to inflammatory adipocytokines, like adiponectin and leptin. Adiponectin may also play a protective role in plaque rupture through selectively increasing the tissue inhibitor of metalloproteinase (TIMP) expression. Leptin induces the expression of MMP-2 activators as well as the expression of MMP-2, MMP-9, and TIMP-1 in different human cells. Furthermore, sex hormones also participate in MMP regulation. In postmenopausal women, hormone replacement therapy produces an increase in MMP activity, leading to a breakdown in ECM homeostasis and accelerated progression of vascular pathologies. Besides, in men, an inverse relationship between testosterone levels and MMP-2 activity has been described. It is still necessary to go forward in the study of MMPs in different metabolic situations to corroborate their role as vulnerable plaque biomarkers.

Keywords: adipose tissue; insulin-resistance; matrix metalloproteinases; sex hormones


  • 1.

    Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 2000;14:2123–33.CrossrefGoogle Scholar

  • 2.

    Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res 2006;312:608–22.CrossrefGoogle Scholar

  • 3.

    Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007;17:253–8.PubMedCrossrefGoogle Scholar

  • 4.

    Lijnen HR. Murine models of obesity and hormonal therapy. Thromb Res 2011;127:S17–20.CrossrefGoogle Scholar

  • 5.

    Després JP. Abdominal obesity and cardiovascular disease: is inflammation the missing link? Can J Cardiol 2012;28:642–52.CrossrefGoogle Scholar

  • 6.

    Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 2009;58:718e25.Google Scholar

  • 7.

    Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 2008;37:635–46.CrossrefPubMedGoogle Scholar

  • 8.

    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69:562–73.CrossrefGoogle Scholar

  • 9.

    Borkakoti N. Structural studies of matrix metalloproteinases. J Mol Med 2000;78:261–8.CrossrefGoogle Scholar

  • 10.

    Lijnen HR. Angiogenesis and obesity. Cardiovasc Res 2008;78:286–93.CrossrefGoogle Scholar

  • 11.

    Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005;85:1–31.CrossrefGoogle Scholar

  • 12.

    de Nooijer R, Verkleij CJ, von der Thüsen JH, Jukema JW, van der Wall EE, van Berkel TJ, Baker AH, Biessen EA. Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb Vasc Biol 2006;26:340–6.Google Scholar

  • 13.

    Choudhary S, Higgins CL, Chen IY, Reardon M, Lawrie G, Vick GWIII, Karmonik C, Via DP, Morrisett JD. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler Thromb Vasc Biol 2006;26:2351–8.CrossrefGoogle Scholar

  • 14.

    Nagase H. Metalloproteases. Curr Protoc Protein Sci 2011;Chapter 21(Unit 21.4):1–13.Google Scholar

  • 15.

    Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 1997;74:111–22.Google Scholar

  • 16.

    Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 2002;115:3719–27.CrossrefGoogle Scholar

  • 17.

    Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. J Am Med Assoc 2002;288:2709–16.Google Scholar

  • 18.

    Miksztowicz V, Muzzio ML, Royer M, Prada M, Wikinski R, Schreier L, Berg G. Increased plasma activity of metalloproteinase 2 in women with metabolic syndrome. Metabolism 2008;57:1493–6.CrossrefGoogle Scholar

  • 19.

    Muzzio ML, Miksztowicz V, Brites F, Aguilar D, Repetto EM, Wikinski R, Tavella M, Schreier L, Berg GA. Metalloproteases 2 and 9, Lp-PLA and lipoprotein profile in coronary patients. Arch Med Res 2009;40:48–53.CrossrefGoogle Scholar

  • 20.

    Gonçalves FM, Jacob-Ferreira AL, Gomes VA, Casella-Filho A, Chagas AC, Marcaccini AM, Gerlach RF, Tanus-Santos JE. Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta 2009;403:173–7.Google Scholar

  • 21.

    Aquilante CL, Beitelshees AL, Zineh I. Correlates of serum matrix metalloproteinase- 8 (MMP-8) concentrations in nondiabetic subjects without cardiovascular disease. Clin Chim Acta 2007;379:48–52.Google Scholar

  • 22.

    Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007;5:265–82.CrossrefGoogle Scholar

  • 23.

    Lijnen HR, Maquoi E, Demeulemeester D, Van Hoef B, Collen D. Modulation of fibrinolytic and gelatinolytic activity during adipose tissue development in a mouse model of nutritionally induced obesity. Thromb Haemost 2002;88:345–53.Google Scholar

  • 24.

    Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 2002;51:1093–101.CrossrefGoogle Scholar

  • 25.

    Christiaens V, Lijnen HR. Role of the fibrinolytic and matrix metalloproteinase systems in development of adipose tissue. Arch Physiol Biochem 2006;112:254–9.CrossrefGoogle Scholar

  • 26.

    Miksztowicz V, Morales C, Zago V, Friedman S, Schreier L, Berg G. Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucrose-rich diet. Nutr Metab Cardiovasc Dis 2014;24:294–300.CrossrefGoogle Scholar

  • 27.

    Gummesson A, Hagg D, Olson FJ, Hulthe J, Carlsson LM, Fagerberg B. Adipose tissue is not an important source for matrix metalloproteinase-9 in the circulation. Scand J Clin Lab Invest 2009;69:636e42.CrossrefGoogle Scholar

  • 28.

    Van Hul M, Piccard H, Lijnen HR. Gelatinase B (MMP-9) deficiency does not affect murine adipose tissue development. Thromb Haemost 2010;104:165–71.CrossrefGoogle Scholar

  • 29.

    Derosa G, Ferrari I, D’Angelo A, Tinelli C, Salvadeo SA, Ciccarelli L, Piccinni MN, Gravina A, Ramondetti F, Maffioli P, Cicero AF. Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium 2008;15:219–24.CrossrefGoogle Scholar

  • 30.

    Pendás AM, Folgueras AR, Llano E, Caterina J, Frerard F, Rodríguez F, Astudillo A, Noël A, Birkedal-Hansen H, López-Otín C. Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol 2004;24:5304–13.CrossrefGoogle Scholar

  • 31.

    Maquoi E, Demeulemeester D, Voros G, Collen D, Lijnen HR. Enhanced nutritionally induced adipose tissue development in mice with stromelysin-1 gene inactivation. Thromb Haemost 2003;89:696–704.Google Scholar

  • 32.

    Lijnen HR, Van HB, Frederix L, Rio MC, Collen D. Adipocyte hypertrophy in stromelysin-3 deficient mice with nutritionally induced obesity. Thromb Haemost 2002;87:530–5.Google Scholar

  • 33.

    Chun TH, Inoue M, Morisaki H, Yamanaka I, Miyamoto Y, Okamura T, Sato-Kusubata K, Weiss SJ. Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 2010;59:2484–94.CrossrefGoogle Scholar

  • 34.

    Christiaens V, Scroyen I, Lijnen HR. Role of proteolysis in development of murine adipose tissue. Thromb Haemost 2008;99:290–4.Google Scholar

  • 35.

    Van Hul M, Lijnen HR. A functional role of gelatinase A in the development of nutritionally induced obesity in mice. J Thromb Haemost 2008;6:1198–206.CrossrefGoogle Scholar

  • 36.

    Van Hul M, Lijnen HR. Matrix metalloproteinase inhibition impairs murine adipose tissue development independently of leptin. Endocr J 2011;58:101–7.CrossrefGoogle Scholar

  • 37.

    Van Hul M, Bauters D, Himmelreich U, Kindt N, Noppen B, Vanhove M, Lijnen HR. Effect of gelatinase inhibition on adipogenesis and adipose tissue development. Clin Exp Pharmacol Physiol 2012;39:49–56.CrossrefGoogle Scholar

  • 38.

    Boden G, Song W, Pashko L, Kresge K. In vivo effects of insulin and free fatty acids on matrix metalloproteinases in rat aorta. Diabetes 2008;57:476–83.Google Scholar

  • 39.

    Boden G, Song W, Kresge K, Mozzoli M, Cheung P. Effects of hyperinsulinemia on hepatic metalloproteinases and their tissue inhibitors. Am J Physiol Endocrinol Metab 2008;295:E692–7.Google Scholar

  • 40.

    Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 2013;227:216–21.CrossrefGoogle Scholar

  • 41.

    Sweeney G. Leptin signaling. Cell Signal 2002;14:655–63.CrossrefGoogle Scholar

  • 42.

    Park HY, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, Jang Y, Cho SY, Kim HS. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med 2001;33:95–102.CrossrefGoogle Scholar

  • 43.

    Oda A, Taniguchi T, Yokoyama M. Leptin stimulates rat aortic smooth muscle cell proliferation and migration. Kobe J Med Sci 2001;47:141–50.Google Scholar

  • 44.

    Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes 2005;54:2227–34.CrossrefGoogle Scholar

  • 45.

    Madani S, De Girolamo S, Munoz DM, Li RK, Sweeney G. Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovasc Res 2005;69:716–25.Google Scholar

  • 46.

    Schram K, Wong MM, Palanivel R, No EK, Dixon IM, Sweeney G. Increased expression and cell surface localization of MT1-MMP plays a role in stimulation of MMP-2 activity by leptin in neonatal rat cardiac myofibroblasts. J Mol Cell Cardiol 2008;44:874–81.CrossrefGoogle Scholar

  • 47.

    Moon HS, Lee HG, Seo JH, Chung CS, Guo DD, Kim TG, Choi YJ, Cho CS. Leptin-induced matrix metalloproteinase-2 secretion is suppressed by trans-10,cis-12 conjugated linoleic acid. Biochem Biophys Res Commun 2007;356:955–6.CrossrefGoogle Scholar

  • 48.

    Reilly MP, Iqbal N, Schutta M, Wolfe ML, Scally M, Localio AR, Rader DJ, Kimmel SE. Plasma leptin levels are associated with coronary atherosclerosis in type 2 diabetes. J Clin Endocrinol Metab 2004;89:3872–8.CrossrefGoogle Scholar

  • 49.

    Villarreal-Molina MT, Antuna-Puente B. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie 2012;94:2143–9.CrossrefGoogle Scholar

  • 50.

    Yuji Matsuzawa. Adiponectin: identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl 2005;6:7–14.Google Scholar

  • 51.

    Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 2002;105:2893–8.CrossrefGoogle Scholar

  • 52.

    Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, Nagasawa A, Funahashi T, Matsuzawa Y. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 2004;109:2046–9.CrossrefGoogle Scholar

  • 53.

    Derosa G, Maffioli P, D’Angelo A, Salvadeo SA, Ferrari I, Fogari E, Gravina A, Mereu R, Palumbo I, Randazzo S, Cicero AF. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in combined dyslipidemia. Clin Invest Med 2009;32:E124–32.Google Scholar

  • 54.

    Cheng M, Hashmi S, Mao X, Zeng QT. Relationships of adiponectin and matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio with coronary plaque morphology in patients with acute coronary syndrome. Can J Cardiol 2008;24:385–90.CrossrefGoogle Scholar

  • 55.

    Hwang JJ, Yang WS, Chiang FT, Chen MF, Lin HJ, Huang PJ, Hsu SH, Lai SK, Wu YW. Association of circulating matrix metalloproteinase-1, but not adiponectin, with advanced coronary artery disease. Atherosclerosis 2009;204:293–7.Google Scholar

  • 56.

    Tong KM, Chen CP, Huang KC, Shieh DC, Cheng HC, Tzeng CY, Chen KH, Chiu YC, Tang CH. Adiponectin increases MMP-3 expression in human chondrocytes through AdipoR1 signaling pathway. J Cell Biochem 2011;112:1431–40.CrossrefGoogle Scholar

  • 57.

    Wu X, Yan Q, Zhang Z, Du G, Wan X. Acrp30 inhibits leptin-induced metastasis by downregulating the JAK/STAT3 pathway via AMPK activation in aggressive SPEC-2 endometrial cancer cells. Oncol Rep 2012;27:1488–96.Google Scholar

  • 58.

    Pettersson K, Gustafsson JA. Role of estrogen receptor beta in estrogen action. Annu Rev Physiol 2001;63:165–92.CrossrefGoogle Scholar

  • 59.

    Davis KE, D Neinast M, Sun K, M Skiles W, D Bills J, A Zehr J, Zeve D, D Hahner L, W Cox D, M Gent L, Xu Y, V Wang Z, A Khan S, Clegg DJ. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2013;2:227–42.CrossrefGoogle Scholar

  • 60.

    Mesch VR, Boero LE, Siseles NO, Royer M, Prada M, Sayegh F, Schreier L, Benencia HJ, Berg GA. Metabolic syndrome throughout the menopausal transition: influence of age and menopausal status. Climacteric 2006;9:40–8.CrossrefGoogle Scholar

  • 61.

    Dubey RK, Imthurn B, Zacharia LC, Jackson EK. Hormone replacement therapy and cardiovascular disease: what went wrong and where do we go from here? Hypertension 2004;44:789–95.CrossrefGoogle Scholar

  • 62.

    Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol 2004;286:R233–49.Google Scholar

  • 63.

    Smiley DA, Khalil RA. Estrogenic compounds, estrogen receptors and vascular cell signaling in the aging blood vessels. Curr Med Chem 2009;16:1863–87.CrossrefGoogle Scholar

  • 64.

    Miksztowicz V, Siseles N, Fernandez Machulsky N, Schreier L, Berg G. Increase in MMP-2 activity in overweight and obese women is associated with menopausal status. Climacteric 2012;15:602–6.CrossrefGoogle Scholar

  • 65.

    Uzui H, Sinha SK, Rajavashisth TB. 17β-Estradiol inhibits oxidized low-density lipoprotein-induced increase in matrix metalloproteinase-9 expression in human macrophages. J Invest Med 2011;59:1104–8.Google Scholar

  • 66.

    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J; Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. J Am Med Assoc 2002;288:321–33.Google Scholar

  • 67.

    Lewandowski KC, Komorowski J, Mikhalidis DP, Bienkiewicz M, Tan BK, O’Callaghan CJ, Lewinski A, Prelevic G, Randeva HS. Effects of hormone replacement therapy type and route of administration on plasma matrix metalloproteinases and their tissue inhibitors in postmenopausal women. J Clin Endocrinol Metab 2006;91:3123–30.CrossrefGoogle Scholar

  • 68.

    Grandas OH, Mountain DJ, Kirkpatrick SS, Rudrapatna VS, Cassada DC, Stevens SL, Freeman MB, Goldman MH. Effect of hormones on matrix metalloproteinases gene regulation in human aortic smooth muscle cells. J Surg Res 2008;148:94–9.CrossrefGoogle Scholar

  • 69.

    Hu P, Greendale GA, Palla SL, Reboussin BA, Herrington DM, Barrett-Connor E, Reuben DB. The effects of hormone therapy on the markers of inflammation and endothelial function and plasma matrix metalloproteinase-9 level in postmenopausal women: the postmenopausal estrogen progestin intervention (PEPI) trial. Atherosclerosis 2006;185:347–52.Google Scholar

  • 70.

    Grodstein F, Manson JE, Stampfer MJ. Hormone therapy and coronary heart disease: the role of time since menopause and age at hormone initiation. J Womens Health (Larchmt) 2006;15:35–44.CrossrefGoogle Scholar

  • 71.

    Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, Ko M, LaCroix AZ, Margolis KL, Stefanick ML. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. J Am Med Assoc 2007;297:1465–77.Google Scholar

  • 72.

    Grodstein F, Clarkson TB, Manson JE. Understanding the divergent data on postmenopausal hormone therapy. N Engl J Med 2003;348:645–50.CrossrefGoogle Scholar

  • 73.

    Karas R, Clarkson TB. Considerations in interpreting the cardiovascular effects of hormone replacement therapy observed in the WHI: timing is everything. Menopausal Med 2003;10:8–12.Google Scholar

  • 74.

    Pustovrh MC, Jawerbaum A, Capobianco E, White V, Martínez N, López-Costa JJ, González E. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats. Free Radic Res 2005;39:1285–93.Google Scholar

  • 75.

    Pustovrh MC, Jawerbaum A, White V, Capobianco E, Higa R, Martínez N, López-Costa JJ, González E. The role of nitric oxide on matrix metalloproteinase 2 (MMP2) and MMP9 in placenta and fetus from diabetic rats. Reproduction 2007;134:605–13.CrossrefGoogle Scholar

  • 76.

    Capobianco E, White V, Sosa M, Di Marco I, Basualdo MN, Faingold MC, Jawerbaum A. Regulation of matrix metalloproteinases 2 and 9 activities by peroxynitrites in term placentas from type 2 diabetic patients. Reprod Sci 2012;19:814–22.Google Scholar

  • 77.

    Lewandowski KC, Komorowski J, O’Callaghan CJ, Tan BK, Chen J, Prelevic GM, Randeva HS. Increased circulating levels of matrix metalloproteinase-2 and -9 in women with the polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91:1173–7.Google Scholar

  • 78.

    Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev 2003;24:313–40.CrossrefGoogle Scholar

  • 79.

    Yeap BB. Are declining testosterone levels a major risk factor for ill-health in aging men? Int J Impot Res 2009;21:24–36.CrossrefGoogle Scholar

  • 80.

    Hak AE, Witteman JC, de Jong FH, Geerlings MI, Hofman A, Pols HA. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab 2002;87:3632.CrossrefGoogle Scholar

  • 81.

    Hanke H, Lenz C, Hess B, Spindler KD, Weidemann W. Effect of testosterone on plaque development and androgen receptor expression in the arterial vessel wall. Circulation 2001;103:1382.CrossrefGoogle Scholar

  • 82.

    Tharp DL, Masseau I, Ivey J, Ganjam VK, Bowles DK. Endogenous testosterone attenuates neointima formation after moderate coronary balloon injury in male swine. Cardiovasc Res 2009;82:152.PubMedCrossrefGoogle Scholar

  • 83.

    Mountain DJ, Freeman BM, Kirkpatrick SS, Beddies JW, Arnold JD, Freeman MB, Goldman MH, Stevens SL, Klein FA, Grandas OH. Androgens regulate MMPs and the cellular processes of intimal hyperplasia. J Surg Res 2013;184:619–27.Google Scholar

About the article

Corresponding author: Prof. Dr. Gabriela Berg, Laboratory of Lipids and Lipoproteins, Faculty of Pharmacy and Biochemistry, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, Junín 956, CABA, Buenos Aires, Argentina, Phone: +54 11 49648297, Fax: +54 11 59508692, E-mail:

Received: 2013-12-30

Accepted: 2014-02-28

Published Online: 2014-03-28

Published in Print: 2014-02-01

Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 17, Issue 2, Pages 79–87, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2013-0069.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Soumaya Boumiza, Sarra Bchir, Hela ben Nasr, Ammar Abbassi, Marie-Paule Jacob, Xavier Norel, Zouhair Tabka, and Karim Chahed
Disease Markers, 2017, Volume 2017, Page 1
A. Janus, E. Szahidewicz-Krupska, G. Mazur, and A. Doroszko
Mediators of Inflammation, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in