Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board Member: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

4 Issues per year

CiteScore 2016: 2.15

SCImago Journal Rank (SJR) 2015: 0.432
Source Normalized Impact per Paper (SNIP) 2015: 0.334

See all formats and pricing
More options …
Volume 22, Issue 2 (May 2015)


The role of fructose in metabolism and cancer

Bérénice Charrez
  • Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liang Qiao
  • Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lionel Hebbard
  • Corresponding author
  • Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-12 | DOI: https://doi.org/10.1515/hmbci-2015-0009


Fructose consumption has dramatically increased in the last 30 years. The principal form has been in the form of high-fructose corn syrup found in soft drinks and processed food. The effect of excessive fructose consumption on human health is only beginning to be understood. Fructose has been confirmed to induce several obesity-related complications associated with the metabolic syndrome. Here we present an overview of fructose metabolism and how it contrasts with that of glucose. In addition, we examine how excessive fructose consumption can affect de novo lipogenesis, insulin resistance, inflammation, and reactive oxygen species production. Fructose can also induce a change in the gut permeability and promote the release of inflammatory factors to the liver, which has potential implications in increasing hepatic inflammation. Moreover, fructose has been associated with colon, pancreas, and liver cancers, and we shall discuss the evidence for these observations. Taken together, data suggest that sustained fructose consumption should be curtailed as it is detrimental to long-term human health.

Keywords: cancer; fructose; metabolism


  • 1.

    World Health Organization Fact Sheet. Obesity and overweight. 2014; No. 311.Google Scholar

  • 2.

    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569–78.Google Scholar

  • 3.

    Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2011;8:35–44.CrossrefPubMedGoogle Scholar

  • 4.

    Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 2012;8:e1002518.Google Scholar

  • 5.

    Lichtenstein A, Kennedy E, Barrier P, Danford D, Ernst N, Grundy S, Leveille G, Van Horn L, Williams C, Booth S. Dietary fat consumption and health. Nutr Rev 1998;56:S3–19.Google Scholar

  • 6.

    Haley S, Reed J, Lin B-H, Cook A. Sweetener consumption in the United States: distribution by demographic and product characteristics. Washington, DC: Economic Research Service Electronic Outlook Report USDA Economic Research Service, 2005.Google Scholar

  • 7.

    Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 2004;79:537–43.Google Scholar

  • 8.

    Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010;90:23–46.CrossrefGoogle Scholar

  • 9.

    Port AM, Ruth MR, Istfan NW. Fructose consumption and cancer: is there a connection? Curr Opin Endocrinol Diabetes Obes 2012;19:367–74.CrossrefGoogle Scholar

  • 10.

    Bray GA. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Adv Nutr 2013;4:220–5.CrossrefGoogle Scholar

  • 11.

    Abid A, Taha O, Nseir W, Farah R, Grosovski M, Assy N. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J Hepatol 2009;51:918–24.CrossrefGoogle Scholar

  • 12.

    Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J Am Med Assoc 2004;292:927–34.Google Scholar

  • 13.

    Hevener AL, Febbraio MA, Stock Conference Working Group. The 2009 stock conference report: inflammation, obesity and metabolic disease. Obes Rev 2010;11:635–44.Google Scholar

  • 14.

    Samuel VT. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab 2011;22:60–5.CrossrefGoogle Scholar

  • 15.

    Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 2012;13:799–809.CrossrefGoogle Scholar

  • 16.

    Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010;107:8788–93.CrossrefGoogle Scholar

  • 17.

    Foray F, Hollander D, Mcpherson JD, Shilton BH, Walton DJ. Role of fructose in glycation and cross-linking of proteins. Biochemistry 1988;27:1901–7.Google Scholar

  • 18.

    Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem 2012;23:203–8.CrossrefGoogle Scholar

  • 19.

    Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, Sacks F, Steffen LM, Wylie-Rosett J, American Heart Association Nutrition Committee of the Council on Nutrition PA, Metabolism, the Council on E, Prevention. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 2009;120:1011–20.CrossrefGoogle Scholar

  • 20.

    van der Borght K, Kohnke R, Goransson N, Deierborg T, Brundin P, Erlanson-Albertsson C, Lindqvist A. Reduced neurogenesis in the rat hippocampus following high fructose consumption. Regul Pept 2011;167:26–30.Google Scholar

  • 21.

    Theytaz F, de Giorgi S, Hodson L, Stefanoni N, Rey V, Schneiter P, Giusti V, Tappy L. Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 2014;6:2632–49.CrossrefGoogle Scholar

  • 22.

    McQuade DT, Plutschack MB, Seeberger PH. Passive fructose transporters in disease: a molecular overview of their structural specificity. Org Biomol Chem 2013;11:4909–20.CrossrefGoogle Scholar

  • 23.

    Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002;76:911–22.Google Scholar

  • 24.

    Wilder-Smith CH, Li X, Ho SS, Leong SM, Wong RK, Koay ES, Ferraris RP. Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. United European Gastroenterol J 2014;2:14–21.Google Scholar

  • 25.

    Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 2005;63:133–57.CrossrefGoogle Scholar

  • 26.

    Cantley LC. Cancer, metabolism, fructose, artificial sweeteners, and going cold turkey on sugar. BMC Biol 2014;12:8.CrossrefGoogle Scholar

  • 27.

    Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 2013;57:2525–31.CrossrefGoogle Scholar

  • 28.

    Kretowicz M, Johnson RJ, Ishimoto T, Nakagawa T, Manitius J. The impact of fructose on renal function and blood pressure. Int J Nephrol 2011;2011:315879.Google Scholar

  • 29.

    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107:1058–70.CrossrefGoogle Scholar

  • 30.

    Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ, Ruzycki P, Rivard C, Inaba S, Roncal-Jimenez CA, Bales ES, Diggle CP, Asipu A, Petrash JM, Kosugi T, Maruyama S, Sanchez-Lozada LG, McManaman JL, Bonthron DT, Sautin YY, Johnson RJ. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun 2013;4:2434.Google Scholar

  • 31.

    Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, McMahan RH, Abdelmalek MF, Rosen HR, Jackman MR, MacLean PS, Diggle CP, Asipu A, Inaba S, Kosugi T, Sato W, Maruyama S, Sanchez-Lozada LG, Sautin YY, Hill JO, Bonthron DT, Johnson RJ. High-fat and high-sucrose (Western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 2013;58:1632–43.CrossrefGoogle Scholar

  • 32.

    Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009;119:1322–34.CrossrefGoogle Scholar

  • 33.

    Robubi A, Huber KR, Krugluger W. Extra fructose in the growth medium fuels lipogenesis of adipocytes. J Obes 2014;2014:647034.Google Scholar

  • 34.

    Park OJ, Cesar D, Faix D, Wu K, Shackleton CH, Hellerstein MK. Mechanisms of fructose-induced hypertriglyceridaemia in the rat: activation of hepatic pyruvate dehydrogenase through inhibition of pyruvate dehydrogenase kinase. Biochem J 1992;282:753–7.Google Scholar

  • 35.

    Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Loffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 2009;9:252–64.Google Scholar

  • 36.

    Velickovic N, Djordjevic A, Vasiljevic A, Bursac B, Milutinovic DV, Matic G. Tissue-specific regulation of inflammation by macrophage migration inhibitory factor and glucocorticoids in fructose-fed Wistar rats. Br J Nutr 2013;110:456–65.CrossrefGoogle Scholar

  • 37.

    Roglans N, Vilà L, Farré M, Alegret M, Sánchez RM, Vázquez-Carrera M, Laguna JC. Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 2007;45:778–88.CrossrefGoogle Scholar

  • 38.

    Alwahsh SM, Xu M, Seyhan HA, Ahmad S, Mihm S, Ramadori G, Schultze FC. Diet high in fructose leads to an overexpression of lipocalin-2 in rat fatty liver. World J Gastroenterol 2014;20:1807–21.Google Scholar

  • 39.

    Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009;50:1094–104.CrossrefGoogle Scholar

  • 40.

    Bergheim I, Weber S, Vos M, Kramer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008;48:983–92.CrossrefGoogle Scholar

  • 41.

    Spruss A, Kanuri G, Stahl C, Bischoff SC, Bergheim I. Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab Invest 2012;92:1020–32.CrossrefGoogle Scholar

  • 42.

    Johnson RJ, Rivard C, Lanaspa MA, Otabachian-Smith S, Ishimoto T, Cicerchi C, Cheeke PR, Macintosh B, Hess T. Fructokinase, fructans, intestinal permeability, and metabolic syndrome: an equine connection? J Equine Vet Sci 2013;33:120–6.CrossrefGoogle Scholar

  • 43.

    Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010;375:2267–77.Google Scholar

  • 44.

    Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012;148:852–71.CrossrefGoogle Scholar

  • 45.

    Le KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C, Boesch C, Tappy L. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 2009;89: 1760–5.Google Scholar

  • 46.

    Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 2005;54:1907–13.CrossrefGoogle Scholar

  • 47.

    Aeberli I, Hochuli M, Gerber PA, Sze L, Murer SB, Tappy L, Spinas GA, Berneis K. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 2013;36:150–6.CrossrefGoogle Scholar

  • 48.

    Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, Ye JM. Activation of PPARalpha ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 2013;62:2095–105.CrossrefGoogle Scholar

  • 49.

    Zawalich WS, Rognstad R, Pagliara AS, Matschinsky FM. A comparison of the utilization rates and hormone-releasing actions of glucose, mannose, and fructose in isolated pancreatic islets. Journal Biol Chem 1977;252:8519–23.Google Scholar

  • 50.

    Bailey CJ, Day C, Knapper JM, Turner SL, Flatt PR. Antihyperglycaemic effect of saccharin in diabetic ob/ob mice. Br J Pharmacol 1997;120:74–8.CrossrefGoogle Scholar

  • 51.

    Malaisse WJ, Vanonderbergen A, Louchami K, Jijakli H, Malaisse-Lagae F. Effects of artificial sweeteners on insulin release and cationic fluxes in rat pancreatic islets. Cellular Signal 1998;10:727–33.CrossrefGoogle Scholar

  • 52.

    Kyriazis GA, Soundarapandian MM, Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 2012;109:E524–32.CrossrefGoogle Scholar

  • 53.

    Koo HY, Wallig MA, Chung BH, Nara TY, Cho BH, Nakamura MT. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta 2008;1782:341–8.Google Scholar

  • 54.

    Stirpe F, Della Corte E, Bonetti E, Abbondanza A, Abbati A, De Stefano F. Fructose-induced hyperuricaemia. Lancet 1970;2:1310–1.CrossrefGoogle Scholar

  • 55.

    Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2006;290:F625–31.Google Scholar

  • 56.

    Dills WL, Jr. Protein fructosylation: fructose and the Maillard reaction. Am J Clin Nutr 1993;58(Suppl 5):779S–87S.Google Scholar

  • 57.

    Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science 1981;213:222–4.Google Scholar

  • 58.

    Bose T, Chakraborti AS. Fructose-induced structural and functional modifications of hemoglobin: implication for oxidative stress in diabetes mellitus. Biochim Biophys Acta 2008;1780:800–8.Google Scholar

  • 59.

    Shangari N, O’Brien PJ. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 2004;68:1433–42.CrossrefGoogle Scholar

  • 60.

    Feng CY, Wong S, Dong Q, Bruce J, Mehta R, Bruce WR, O’Brien PJ. Hepatocyte inflammation model for cytotoxicity research: fructose or glycolaldehyde as a source of endogenous toxins. Arch Physiol Biochem 2009;115:105–11.CrossrefGoogle Scholar

  • 61.

    Lee O, Bruce WR, Dong Q, Bruce J, Mehta R, O’Brien PJ. Fructose and carbonyl metabolites as endogenous toxins. Chem Biol Interact 2009;178:332–9.CrossrefGoogle Scholar

  • 62.

    Crescenzo R, Bianco F, Falcone I, Coppola P, Liverini G, Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur J Nutr 2013;52:537–45.CrossrefGoogle Scholar

  • 63.

    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US. adults. N Engl J Med 2003;348:1625–38.Google Scholar

  • 64.

    Parekh N, Chandran U, Bandera EV. Obesity in cancer survival. Annu Rev Nutr 2012;32:311–42.CrossrefGoogle Scholar

  • 65.

    Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011;11:325–37.CrossrefGoogle Scholar

  • 66.

    Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Wigler DS, Venook A, Fuchs CS. Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst 2012;104:1702–11.CrossrefGoogle Scholar

  • 67.

    Michaud DS, Fuchs CS, Liu S, Willett WC, Colditz GA, Giovannucci E. Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 2005;14:138–47.Google Scholar

  • 68.

    Higginbotham S, Zhang ZF, Lee IM, Cook NR, Giovannucci E, Buring JE, Liu S, Women’s Health S. Dietary glycemic load and risk of colorectal cancer in the Women’s Health Study. J Natl Cancer Inst 2004;96:229–33.CrossrefGoogle Scholar

  • 69.

    Stamp D, Zhang XM, Medline A, Bruce WR, Archer MC. Sucrose enhancement of the early steps of colon carcinogenesis in mice. Carcinogenesis 1993;14:777–9.CrossrefGoogle Scholar

  • 70.

    Jacobsen H, Poulsen M, Dragsted LO, Ravn-Haren G, Meyer O, Lindecrona RH. Carbohydrate digestibility predicts colon carcinogenesis in azoxymethane-treated rats. Nutr Cancer 2006;55:163–70.CrossrefGoogle Scholar

  • 71.

    Jiao L, Flood A, Subar AF, Hollenbeck AR, Schatzkin A, Stolzenberg-Solomon R. Glycemic index, carbohydrates, glycemic load, and the risk of pancreatic cancer in a prospective cohort study. Cancer Epidemiol Biomarkers Prev 2009;18:1144–51.CrossrefGoogle Scholar

  • 72.

    Simon E, Joseph AJ, Choudhrie L, Eapen A, Vyas F, Sitaram V, Ramakrishna BS, Chacko A. Intraductal papillary mucinous neoplasm of the pancreas. Ind J gastroenterol 2010;29:40.CrossrefGoogle Scholar

  • 73.

    Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 2010;70:6368–76.CrossrefGoogle Scholar

  • 74.

    Cabibbo G, Craxi A. Epidemiology, risk factors and surveillance of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2010;14:352–5.Google Scholar

  • 75.

    Hashimoto E, Yatsuji S, Tobari M, Taniai M, Torii N, Tokushige K, Shiratori K. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Gastroenterol 2009;44(Suppl 19):89–95.CrossrefGoogle Scholar

  • 76.

    Sanyal A, Poklepovic A, Moyneur E, Barghout V. Population-based risk factors and resource utilization for HCC: US perspective. Curr Med Res Opin 2010;26:2183–91.CrossrefGoogle Scholar

  • 77.

    Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011;141:1249–53.Google Scholar

  • 78.

    Kawada N, Imanaka K, Kawaguchi T, Tamai C, Ishihara R, Matsunaga T, Gotoh K, Yamada T, Tomita Y. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J Gastroenterol 2009;44:1190–4.CrossrefGoogle Scholar

  • 79.

    Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010;51:1820–32.CrossrefGoogle Scholar

  • 80.

    Karagozian R, Derdak Z, Baffy G. Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism 2014;63:607–17.CrossrefGoogle Scholar

  • 81.

    Enzmann H, Ohlhauser D, Dettler T, Bannasch P. Enhancement of hepatocarcinogenesis in rats by dietary fructose. Carcinogenesis 1989;10:1247–52.CrossrefGoogle Scholar

  • 82.

    Kumamoto R, Uto H, Oda K, Ibusuki R, Tanoue S, Arima S, Mawatari S, Kumagai K, Numata M, Tamai T, Moriuchi A, Fujita H, Oketani M, Ido A, Tsubouchi H. Dietary fructose enhances the incidence of precancerous hepatocytes induced by administration of diethylnitrosamine in rat. Eur J Med Res 2013;18:54.CrossrefGoogle Scholar

  • 83.

    Healy ME, Chow JD, Byrne FL, Breen DS, Leitinger N, Li C, Lackner C, Caldwell SH, Hoehn KL. Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. J Hepatol 2015;62:599–606.CrossrefGoogle Scholar

  • 84.

    Assy N, Nasser G, Kamayse I, Nseir W, Beniashvili Z, Djibre A, Grosovski M. Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can J Gastroenterol 2008;22:811–6.Google Scholar

About the article

Corresponding author: Lionel Hebbard, Storr Liver Centre, Westmead Millennium Institute, PO Box 412, Westmead, NSW 2145, Australia, Phone: +61 2 86273533, Fax: +61 2 86273099, E-mail:

Received: 2015-01-20

Accepted: 2015-04-02

Published Online: 2015-05-12

Published in Print: 2015-05-01

Citation Information: Hormone Molecular Biology and Clinical Investigation, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2015-0009.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiajing Fan, Hongru Liu, Miao Liu, Yuanyuan Wang, Li Qiu, and Yanfen Cui
PeerJ, 2017, Volume 5, Page e3804
Bérénice Charrez
World Journal of Gastroenterology, 2016, Volume 22, Number 8, Page 2494
D’Angelo Carlo Magliano, Isabele Bringhenti, and Vanessa Souza-Mello
Nuclear Receptor Research, 2016, Volume 3
Elvira Barroso, Antonia Montilla, Nieves Corzo, Carmen Peláez, M. Carmen Martínez-Cuesta, and Teresa Requena
Food Research International, 2016, Volume 89, Page 302

Comments (0)

Please log in or register to comment.
Log in