Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

4 Issues per year


CiteScore 2017: 2.48

SCImago Journal Rank (SJR) 2017: 1.021
Source Normalized Impact per Paper (SNIP) 2017: 0.830

Online
ISSN
1868-1891
See all formats and pricing
More options …
Volume 26, Issue 2

Issues

Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: effects in insulin signalling and endoplasmic reticulum stress

Cidália D. Pereira
  • Corresponding author
  • Escola Superior de Saúde, Instituto Politécnico de Leiria, Campus 2 – Morro de Lena – Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal
  • Faculty of Medicine, Department of Biochemistry, University of Porto, Porto, Portugal
  • Escola Superior de Saúde, Instituto Politécnico de Leiria, Leiria, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emanuel Passos
  • Faculty of Medicine, Department of Biochemistry, University of Porto, Porto, Portugal
  • CIAFEL – Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milton Severo
  • Faculty of Medicine, Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto, Porto, Portugal
  • Unidade de Investigação em Epidemiologia (EPIUnit), Instituto de Saúde Pública, University of Porto, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isabel Vitó / Xiaogang Wen
  • Escola Superior de Saúde, Instituto Politécnico de Leiria, Campus 2 – Morro de Lena – Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal
  • IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
  • Centro Hospitalar Vila Nova de Gaia/Espinho, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fátima Carneiro
  • Escola Superior de Saúde, Instituto Politécnico de Leiria, Campus 2 – Morro de Lena – Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal
  • IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
  • Centro Hospitalar de São João/Medical Faculty of the University of Porto, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro Gomes
  • Escola Superior de Saúde, Instituto Politécnico de Leiria, Campus 2 – Morro de Lena – Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal
  • Faculty of Medicine, Department of Pharmacology and Therapeutics, University of Porto, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rosário Monteiro
  • Faculty of Medicine, Department of Biochemistry, University of Porto, Porto, Portugal
  • Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria J. MartinsORCID iD: http://orcid.org/0000-0002-3560-3261
Published Online: 2016-01-07 | DOI: https://doi.org/10.1515/hmbci-2015-0033

Abstract

Background: High-fructose and/or low-mineral diets are relevant in metabolic syndrome (MS) development. Insulin resistance (IR) represents a central mechanism in MS development. Glucocorticoid signalling dysfunction and endoplasmic reticulum (ER) and oxidative stresses strongly contribute to IR and associate with MS. We have described that natural mineral-rich water ingestion delays fructose-induced MS development, modulates fructose effects on the redox state and glucocorticoid signalling and increases sirtuin 1 expression. Here, we investigated mineral-rich water ingestion effects on insulin signalling and ER homeostasis of fructose-fed rats.

Materials and methods: Adult male Sprague-Dawley rats had free access to standard-chow diet and different drinking solutions (8 weeks): tap water (CONT), 10%-fructose/tap water (FRUCT) or 10%-fructose/mineral-rich water (FRUCTMIN). Hepatic and adipose (visceral, VAT) insulin signalling and hepatic ER homeostasis (Western blot or PCR) as well as hepatic lipid accumulation were evaluated.

Results: Hepatic p-IRS1Ser307/IRS1 (tendency), p-IRS1Ser307, total JNK and (activated IRE1α)/(activated JNK) decreased with fructose ingestion, while p-JNK tended to increase; mineral-rich water ingestion, totally or partially, reverted all these effects. Total PERK, p-eIF2α (tendency) and total IRS1 (tendency) decreased in both fructose-fed groups. p-ERK/ERK and total IRE1α increasing tendencies in FRUCT became significant in FRUCTMIN (similar pattern for lipid area). Additionally, unspliced-XBP1 increased with mineral-rich water. In VAT, total ERK fructose-induced increase was partially prevented in FRUCTMIN.

Conclusions: Mineral-rich water modulation of fructose-induced effects on insulin signalling and ER homeostasis matches the better metabolic profile previously reported. Increased p-ERK/ERK, adding to decreased IRE1α activation, and increased unspliced-XBP1 and lipid area may protect against oxidative stress and IR development in FRUCTMIN.

Keywords: adipose tissue; endoplasmic reticulum stress; fructose-fed Sprague-Dawley rats; insulin signalling; lipid accumulation; liver; metabolic syndrome; natural mineral-rich water

References

  • 1.

    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–5.Google Scholar

  • 2.

    Aydin S, Aksoy A, Aydin S, Kalayci M, Yilmaz M, Kuloglu T, Citil C, Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition 2014;30: 1–9.CrossrefGoogle Scholar

  • 3.

    Canale MP, Manca di Villahermosa S, Martino G, Rovella V, Noce A, De Lorenzo A, Di Daniele N. Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol 2013;2013:865965.Google Scholar

  • 4.

    Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 2009;42:1331–46.CrossrefGoogle Scholar

  • 5.

    Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010;53:372–84.CrossrefGoogle Scholar

  • 6.

    Yilmaz Y. Is nonalcoholic fatty liver disease the hepatic expression of the metabolic syndrome? World J Hepatol 2012;4:332–4.Google Scholar

  • 7.

    Azzam H, Malnick S. Non-alcoholic fatty liver disease – the heart of the matter. World J Hepatol 2015;7:1369–76.CrossrefGoogle Scholar

  • 8.

    Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011;332:1519–23.Google Scholar

  • 9.

    Sesti G, Fiorentino TV, Hribal ML, Sciacqua A, Perticone F. Association of hepatic insulin resistance indexes to nonalcoholic fatty liver disease and related biomarkers. Nutr Metab Cardiovasc Dis 2013;23:1182–7.CrossrefGoogle Scholar

  • 10.

    Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab 2013;39:16–26.CrossrefGoogle Scholar

  • 11.

    Avogaro A, de Kreutzenberg SV, Fadini GP. Insulin signaling and life span. Pflugers Arch 2010;459:301–14.Google Scholar

  • 12.

    Fulop T, Tessier D, Carpentier A. The metabolic syndrome. Pathol Biol (Paris) 2006;54:375–86.CrossrefGoogle Scholar

  • 13.

    Pansuria M, Xi H, Li L, Yang XF, Wang H. Insulin resistance, metabolic stress, and atherosclerosis. Front Biosci (Schol Ed) 2012;4:916–31.Google Scholar

  • 14.

    Passos E, Ascensao A, Martins MJ, Magalhaes J. Endoplasmic reticulum stress response in non-alcoholic steatohepatitis: the possible role of physical exercise. Metabolism 2015;64:780–92.CrossrefGoogle Scholar

  • 15.

    Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11beta-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab 2012;14:869–881.CrossrefGoogle Scholar

  • 16.

    Pereira CD, Martins MJ, Azevedo I, Monteiro R. 11β-Hydroxysteroid dehydrogenase type 1 and the metabolic syndrome, steroids – clinical aspect. In: Abduljabbar H, editor. InTech. 2011: DOI: 10.5772/28641, ISBN: 978-953-307-705-5. Available from: http://www.intechopen.com/books/steroids-clinical-aspect/11-hydroxysteroid-dehydrogenase-type-1-and-the-metabolic-syndrome.CrossrefGoogle Scholar

  • 17.

    Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013;380:65–78.CrossrefGoogle Scholar

  • 18.

    Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 2010;20:72–7.CrossrefGoogle Scholar

  • 19.

    Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M. Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment – an evolutionary perspective. Metabolism 2013;62:622–33.CrossrefGoogle Scholar

  • 20.

    Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res 2004;27:361–70.CrossrefGoogle Scholar

  • 21.

    Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. J Nutr Biochem 2007;18:1–9.CrossrefGoogle Scholar

  • 22.

    Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res 2012;66:260–8.CrossrefGoogle Scholar

  • 23.

    Feinman RD, Fine EJ. Fructose in perspective. Nutr Metab (Lond) 2013;10:45.CrossrefGoogle Scholar

  • 24.

    Zhang C, Chen X, Zhu RM, Zhang Y, Yu T, Wang H, Zhao H, Zhao M, Ji YL, Chen YH, Meng XH, Wei W, Xu DX. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol Lett 2012;212:229–40.Google Scholar

  • 25.

    Rutledge AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev 2007;65(6 Pt 2):S13–23.CrossrefGoogle Scholar

  • 26.

    Alegret M, Laguna JC. Opposite fates of fructose in the development of metabolic syndrome. World J Gastroenterol 2012;18:4478–4480.CrossrefGoogle Scholar

  • 27.

    Collino M. High dietary fructose intake: sweet or bitter life? World J Diabetes 2011;2:77–81.CrossrefGoogle Scholar

  • 28.

    Kelley GL, Allan G, Azhar S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 2004;145:548–55.Google Scholar

  • 29.

    Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010;90:23–46.CrossrefGoogle Scholar

  • 30.

    Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 2013;339:172–7.Google Scholar

  • 31.

    Tanti JF, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 2009;9:753–62.CrossrefGoogle Scholar

  • 32.

    Wei Y, Pagliassotti MJ. Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance. Am J Physiol Endocrinol Metab 2004;287:E926–33.Google Scholar

  • 33.

    Li JM, Li YC, Kong LD, Hu QH. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology 2010;51:1555–66.CrossrefGoogle Scholar

  • 34.

    Botvineva LA, Nikitin EN, Mel’nikova LN, Akaeva EA. [The use of drinking mineral waters and the fiber-enriched diet for the treatment of patients with type 2 diabetes mellitus]. Vopr Kurortol Fizioter Lech Fiz Kult 2010:13–16.Google Scholar

  • 35.

    Costantino M, Giampaolo C, Filippelli A. [Effects of drinking spa therapy on oxidative stress]. Clin Ter 2012;163:e13–7.Google Scholar

  • 36.

    El-Seweidy MM, Sadik NA, Shaker OG. Role of sulfurous mineral water and sodium hydrosulfide as potent inhibitors of fibrosis in the heart of diabetic rats. Arch Biochem Biophys 2011;506:48–57.Google Scholar

  • 37.

    Simunic S, Pintac L. [Use of the Varazdinske Toplice mineral water in the treatment of diabetes mellitus]. Reumatizam 1990;37:71–4.Google Scholar

  • 38.

    Pereira CD, Severo M, Araújo JR, Guimarães JT, Pestana D, Santos A, Ferreira R, Ascensão A, Magalhães J, Azevedo I, Monteiro R, Martins MJ. Relevance of a hypersaline sodium-rich naturally sparkling mineral water to the protection against metabolic syndrome induction in fructose-fed sprague-dawley rats: a biochemical, metabolic, and redox approach. Int J Endocrinol 2014; 2014 (Article ID 384583).Google Scholar

  • 39.

    Pereira CD, Severo M, Rafael L, Martins MJ, Neves D. Effects of natural mineral-rich water consumption on the expression of Sirtuin 1, vascular endothelial growth factor, angiopoietins, and receptors in the erectile tissue of rats with fructose-induced Metabolic Syndrome. Asian J Androl 2014;16:631–8.CrossrefGoogle Scholar

  • 40.

    Pereira CD, Collado MC, Passos E, Azevedo I, Monteiro R, Martins MJ. Comment to: Luo et al. (2013) Int J Cardiol. 168(4):4454-6. Int J Cardiol 2014;172:512–4.

  • 41.

    Pereira CD, Monteiro R, Martins MJ. Further insights into the metabolically healthy obese phenotype: the role of magnesium. Eur J Intern Med 2014;25:e105–6.CrossrefGoogle Scholar

  • 42.

    Pereira CD, Severo M, Neves D, Ascensao A, Magalhaes J, Guimaraes JT, Monteiro R, Martins MJ. Natural mineral-rich water ingestion improves hepatic and fat glucocorticoid-signaling and increases sirtuin 1 in an animal model of metabolic syndrome. Horm Mol Biol Clin Investig 2015;21:149–57.Google Scholar

  • 43.

    Schoppen S, Sanchez-Muniz FJ, Perez-Granados M, Gomez-Gerique JA, Sarria B, Navas-Carretero S, Pilar Vaquero M. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women? Nutr Hosp 2007;22:538–44.Google Scholar

  • 44.

    Perez-Granados AM, Navas-Carretero S, Schoppen S, Vaquero MP. Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J Nutr Biochem 2010;21:948–53.CrossrefGoogle Scholar

  • 45.

    Rui L. Energy metabolism in the liver. Compr Physiol 2014;4:177–97.CrossrefGoogle Scholar

  • 46.

    Flamment M, Hajduch E, Ferre P, Foufelle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012;23:381–90.CrossrefGoogle Scholar

  • 47.

    Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012;32:2104–112.CrossrefGoogle Scholar

  • 48.

    Prakash P, Khanna V, Singh V, Jyoti A, Jain M, Keshari RS, Barthwal MK, Dikshit M. Atorvastatin protects against ischemia-reperfusion injury in fructose-induced insulin resistant rats. Cardiovasc Drugs Ther 2011;25:285–97.CrossrefGoogle Scholar

  • 49.

    Meeprom A, Sompong W, Suwannaphet W, Yibchok-anun S, Adisakwattana S. Grape seed extract supplementation prevents high-fructose diet-induced insulin resistance in rats by improving insulin and adiponectin signalling pathways. Br J Nutr 2011;106:1173–81.CrossrefGoogle Scholar

  • 50.

    Xu X, Tu L, Wang L, Fang X, Wang DW. CYP2J3 gene delivery reduces insulin resistance via upregulation of eNOS in fructose-treated rats. Cardiovasc Diabetol 2011;10:114.CrossrefGoogle Scholar

  • 51.

    Liu HY, Hong T, Wen GB, Han J, Zuo D, Liu Z, Cao W. Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance. Am J Physiol Endocrinol Metab 2009;297:E898–906.Google Scholar

  • 52.

    Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H, Anai M, Onishi Y, Fujishiro M, Ono H, Shojima N, Inukai K, Fukushima Y, Kikuchi M, Fujita T. Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes 2001;50:573–83.CrossrefGoogle Scholar

  • 53.

    Bhanot S, Salh BS, Verma S, McNeill JH, Pelech SL. In vivo regulation of protein-serine kinases by insulin in skeletal muscle of fructose-hypertensive rats. Am J Physiol 1999;277(2 Pt 1):E299–307.Google Scholar

  • 54.

    Sabio G, Davis RJ. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 2010;35:490–6.CrossrefGoogle Scholar

  • 55.

    Morgan SA, Sherlock M, Gathercole LL, Lavery GG, Lenaghan C, Bujalska IJ, Laber D, Yu A, Convey G, Mayers R, Hegyi K, Sethi JK, Stewart PM, Smith DM, Tomlinson JW. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes 2009;58:2506–15.Google Scholar

  • 56.

    Chapagain A, Caton PW, Kieswich J, Andrikopoulos P, Nayuni N, Long JH, Harwood SM, Webster SP, Raftery MJ, Thiemermann C, Walker BR, Seckl JR, Corder R, Yaqoob MM. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia. Proc Natl Acad Sci USA 2014;111:3817–22.Google Scholar

  • 57.

    Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2012;18:59–68.CrossrefGoogle Scholar

  • 58.

    Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, Hatzoglou M, Koromilas AE. Akt determines cell fate through inhibition of the PERK-eIF2alpha phosphorylation pathway. Sci Signal 2011;4:ra62.CrossrefGoogle Scholar

  • 59.

    Zhang W, Hietakangas V, Wee S, Lim SC, Gunaratne J, Cohen SM. ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Genes Dev 2013;27:441–9.CrossrefGoogle Scholar

  • 60.

    Agouni A, Mody N, Owen C, Czopek A, Zimmer D, Bentires-Alj M, Bence KK, Delibegovic M. Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem J 2011;438:369–78.Google Scholar

  • 61.

    Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85–96.CrossrefGoogle Scholar

  • 62.

    Becatti M, Taddei N, Cecchi C, Nassi N, Nassi PA, Fiorillo C. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci 2012;69:2245–60.Google Scholar

  • 63.

    Frojdo S, Durand C, Molin L, Carey AL, El-Osta A, Kingwell BA, Febbraio MA, Solari F, Vidal H, Pirola L. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011;335:166–76.Google Scholar

  • 64.

    Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2:105–17.Google Scholar

  • 65.

    Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–6.Google Scholar

  • 66.

    Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007;6:307–19.Google Scholar

  • 67.

    Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol 2009;5:367–73.Google Scholar

  • 68.

    Armutcu F, Coskun O, Gurel A, Kanter M, Can M, Ucar F, Unalacak M. Thymosin alpha 1 attenuates lipid peroxidation and improves fructose-induced steatohepatitis in rats. Clin Biochem 2005;38:540–7.Google Scholar

  • 69.

    Gaggini M, Morelli M, Buzzigoli E, Defronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (nafld) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013;5:1544–60.CrossrefGoogle Scholar

  • 70.

    Zámbó V, Simon-Szabó L, Szelényi P, Kereszturi E, Banhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol 2013;5:550–7.Google Scholar

  • 71.

    Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 2008;7:520–32.CrossrefGoogle Scholar

  • 72.

    Lee SJ, Zhang J, Choi AM, Kim HP. Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxid Med Cell Longev 2013;2013:327167.Google Scholar

  • 73.

    Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol 2003;14:281–7.CrossrefGoogle Scholar

  • 74.

    Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 2015;47:181–90.CrossrefGoogle Scholar

  • 75.

    Liu Y, Adachi M, Zhao S, Hareyama M, Koong AC, Luo D, Rando TA, Imai K, Shinomura Y. Preventing oxidative stress: a new role for XBP1. Cell Death Differ 2009;16:847–57.CrossrefGoogle Scholar

  • 76.

    Liu Y, Zhang X, Liang Y, Yu H, Chen X, Zheng T, Zheng B, Wang L, Zhao L, Shi C, Zhao S. Targeting X box-binding protein-1 (XBP1) enhances sensitivity of glioma cells to oxidative stress. Neuropathol Appl Neurobiol 2011;37:395–405.CrossrefGoogle Scholar

  • 77.

    Zhong Y, Li J, Wang JJ, Chen C, Tran JT, Saadi A, Yu Q, Le YZ, Mandal MN, Anderson RE, Zhang SX. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLoS One 2012;7:e38616.CrossrefGoogle Scholar

  • 78.

    Pierre N, Deldicque L, Barbé C, Naslain D, Cani PD, Francaux M. Toll-like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high-fat diet. PLoS One 2013;8:e65061.CrossrefGoogle Scholar

  • 79.

    Darling NJ, Cook SJ. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta 2014;1843:2150–63.Google Scholar

About the article

Corresponding author: Cidália D. Pereira, Escola Superior de Saúde, Instituto Politécnico de Leiria, Campus 2 – Morro de Lena – Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal, E-mail: ; Faculty of Medicine, Department of Biochemistry, University of Porto, Porto, Portugal; and Escola Superior de Saúde, Instituto Politécnico de Leiria, Leiria, Portugal


Received: 2015-07-25

Accepted: 2015-11-18

Published Online: 2016-01-07

Published in Print: 2016-05-01


Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 26, Issue 2, Pages 135–150, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2015-0033.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in