Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi


CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.837

Online
ISSN
1868-1891
See all formats and pricing
More options …
Volume 30, Issue 1

Issues

The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion

Mark F. McCarty
Published Online: 2016-02-12 | DOI: https://doi.org/10.1515/hmbci-2015-0056

Abstract

The serum total and LDL cholesterol levels of long-term vegans tend to be very low. The characteristically low ratio of saturated to unsaturated fat in vegan diets, and the absence of cholesterol in such diets, clearly contribute to this effect. But there is reason to suspect that the quantity and composition of dietary protein also play a role in this regard. Vegan diets of moderate protein intake tend to be relatively low in certain essential amino acids, and as a result may increase hepatic activity of the kinase GCN2, which functions as a gauge of amino acid status. GCN2 activation boosts the liver’s production of fibroblast growth factor 21 (FGF21), a factor which favorably affects serum lipids and metabolic syndrome. The ability of FGF21 to decrease LDL cholesterol has now been traced to at least two mechanisms: a suppression of hepatocyte expression of sterol response element-binding protein-2 (SREBP-2), which in turn leads to a reduction in cholesterol synthesis; and up-regulated expression of hepatocyte LDL receptors, reflecting inhibition of a mechanism that promotes proteasomal degradation of these receptors. In mice, the vascular benefits of FGF21 are also mediated by favorable effects on adipocyte function – most notably, increased adipocyte secretion of adiponectin, which directly exerts anti-inflammatory effects on the vasculature which complement the concurrent reduction in LDL particles in preventing or reversing atherosclerosis. If, as has been proposed, plant proteins preferentially stimulate glucagon secretion owing to their amino acid composition, this would represent an additional mechanism whereby plant protein promotes FGF21 activity, as glucagon acts on the liver to boost transcription of the FGF21 gene.

Keywords: adiponectin; FGF21; GCN2; LDL cholesterol; LDL receptor; SREBP-2; vegan

References

  • 1.

    Sacks FM, Castelli WP, Donner A, Kass EH. Plasma lipids and lipoproteins in vegetarians and controls. N Engl J Med 1975;292:1148–51.PubMedCrossrefGoogle Scholar

  • 2.

    Resnicow K, Barone J, Engle A, Miller S, Haley NJ, Fleming D, Wynder E. Diet and serum lipids in vegan vegetarians: a model for risk reduction. J Am Diet Assoc 1991;91:447–53.PubMedGoogle Scholar

  • 3.

    De Biase SG, Fernandes SF, Gianini RJ, Duarte JL. Vegetarian diet and cholesterol and triglycerides levels. Arq Bras Cardiol 2007;88:35–9.PubMedCrossrefGoogle Scholar

  • 4.

    Campbell TC, Parpia B, Chen J. Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study. Am J Cardiol 1998;82:18T–21T.CrossrefGoogle Scholar

  • 5.

    Roberts WC. Preventing and arresting coronary atherosclerosis. Am Heart J 1995;130:580–600.CrossrefPubMedGoogle Scholar

  • 6.

    Castelli WP. Making practical sense of clinical trial data in decreasing cardiovascular risk. Am J Cardiol 2001;88:16F–20F.PubMedCrossrefGoogle Scholar

  • 7.

    Roberts WC. Atherosclerotic risk factors--are there ten or is there only one? Am J Cardiol 1989;64:552–4.CrossrefGoogle Scholar

  • 8.

    Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115–26.CrossrefPubMedGoogle Scholar

  • 9.

    Campbell TC, Campbell TM. The China study: the most comprehensive study of nutrition ever conducted and the startling implications for diet, weight loss and long-term health. Dallas, TX: Benbella Books, 2006.Google Scholar

  • 10.

    Esselstyn CB, Jr. Updating a 12-year experience with arrest and reversal therapy for coronary heart disease (an overdue requiem for palliative cardiology). Am J Cardiol 1999;84:339–41, A8.CrossrefPubMedGoogle Scholar

  • 11.

    Esselstyn CB, Jr., Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract 2014;63:356–64b.Google Scholar

  • 12.

    Esselstyn CB Jr., Golubic M, Roizen MF. Authors’ response. J Fam Pract 2014;63:493.PubMedGoogle Scholar

  • 13.

    McNamara DJ. The impact of egg limitations on coronary heart disease risk: do the numbers add up? J Am Coll Nutr 2000;19:540S–8S.Google Scholar

  • 14.

    Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr 1992;55:1060–70.PubMedCrossrefGoogle Scholar

  • 15.

    Krajcovicova-Kudlackova M, Babinska K, Valachovicova M. Health benefits and risks of plant proteins. Bratisl Lek Listy 2005;106:231–4.PubMedGoogle Scholar

  • 16.

    Krajcovicova-Kudlackova M, Simoncic R, Bederova A, Babinska K, Beder I. Correlation of carnitine levels to methionine and lysine intake. Physiol Res 2000;49:399–402.PubMedGoogle Scholar

  • 17.

    McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses 2009;72:125–8.CrossrefPubMedGoogle Scholar

  • 18.

    Kritchevsky D, Tepper SA, Czarnecki SK, Klurfeld DM, Story JA. Experimental atherosclerosis in rabbits fed cholesterol-free diets. Part 9. Beef protein and textured vegetable protein. Atherosclerosis 1981;39:169–75.PubMedCrossrefGoogle Scholar

  • 19.

    Kritchevsky D. Protein and atherosclerosis. J Nutr Sci Vitaminol (Tokyo) 1990;36(Suppl 2):S81–6.PubMedCrossrefGoogle Scholar

  • 20.

    Sanchez A, Hubbard RW, Hilton GF. Hypocholesterolemic amino acids and the insulin glucagon ratio. Monogr Atheroscler 1990;16:126–38.PubMedGoogle Scholar

  • 21.

    Carroll KK, Giovannetti PM, Huff MW, Moase O, Roberts DC, Wolfe BM. Hypocholesterolemic effect of substituting soybean protein for animal protein in the diet of healthy young women. Am J Clin Nutr 1978;31:1312–21.CrossrefPubMedGoogle Scholar

  • 22.

    Jenkins DJ, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A, Abdulnour S, Sievenpiper JL, Kendall CW, Kris-Etherton PM. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr 2010;140:2302S–11S.Google Scholar

  • 23.

    Smit E, Nieto FJ, Crespo CJ. Blood cholesterol and apolipoprotein B levels in relation to intakes of animal and plant proteins in US adults. Br J Nutr 1999;82:193–201.PubMedGoogle Scholar

  • 24.

    McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses 2014;83:365–71.PubMedCrossrefGoogle Scholar

  • 25.

    Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 2009;20:436–43.CrossrefPubMedGoogle Scholar

  • 26.

    Lees EK, Krol E, Grant L, Shearer K, Wyse C, Moncur E, Bykowska AS, Mody N, Gettys TW, Delibegovic M. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 2014;13:817–27.CrossrefPubMedGoogle Scholar

  • 27.

    Woo YC, Xu A, Wang Y, Lam KS. Fibroblast growth factor 21 as an emerging metabolic regulator. clinical perspectives. Clin Endocrinol (Oxf) 2013;78:489–96.PubMedCrossrefGoogle Scholar

  • 28.

    Cheung BM, Deng HB. Fibroblast growth factor 21. a promising therapeutic target in obesity-related diseases. Expert Rev Cardiovasc Ther 2014;12:659–66.PubMedCrossrefGoogle Scholar

  • 29.

    Lin Z, Pan X, Wu F, Ye D, Zhang Y, Wang Y, Jin L, Lian Q, Huang Y, Ding H, Triggle C, Wang K, Li X, Xu A. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 2015;131:1861–71.CrossrefPubMedGoogle Scholar

  • 30.

    Giralt M, Gavalda-Navarro A, Villarroya F. Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol 2015; 418 Pt 1:66–73.CrossrefPubMedGoogle Scholar

  • 31.

    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013;18:333–40.PubMedCrossrefGoogle Scholar

  • 32.

    Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao G, Potthoff MJ, Wei W, Wan Y, Yu RT, Evans RM, Kliewer SA, Mangelsdorf DJ. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012;1:e00065.PubMedGoogle Scholar

  • 33.

    Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 2005;146:3718–23.CrossrefPubMedGoogle Scholar

  • 34.

    Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev 2002;11:1441–8.PubMedGoogle Scholar

  • 35.

    Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 2008;7:681–7.PubMedCrossrefGoogle Scholar

  • 36.

    Fentiman IS, Caleffi M, Wang DY, Hampson SJ, Hoare SA, Kwa HG. Diurnal variations in prolactin and growth hormone levels in normal premenopausal vegetarian and omnivorous women. Nutr Cancer 1986;8:239–45.CrossrefPubMedGoogle Scholar

  • 37.

    Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD. FGF21 is an endocrine signal of protein restriction. J Clin Invest 2014;124:3913–22.PubMedCrossrefGoogle Scholar

  • 38.

    Bray GA, Smith SR, de JL, Xie H, Rood J, Martin CK, Most M, Brock C, Mancuso S, Redman LM. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. J Am Med Assoc 2012;307:47–55.CrossrefGoogle Scholar

  • 39.

    Zhu W, Wang C, Liu L, Li Y, Li X, Cai J, Wang H. Effects of fibroblast growth factor 21 on cell damage in vitro and atherosclerosis in vivo. Can J Physiol Pharmacol 2014;92:927–35.CrossrefPubMedGoogle Scholar

  • 40.

    Konig B, Koch A, Spielmann J, Hilgenfeld C, Stangl GI, Eder K. Activation of PPARalpha lowers synthesis and concentration of cholesterol by reduction of nuclear SREBP-2. Biochem Pharmacol 2007;73:574–85.PubMedCrossrefGoogle Scholar

  • 41.

    Thompson GR, Naoumova RP, Watts GF. Role of cholesterol in regulating apolipoprotein B secretion by the liver. J Lipid Res 1996;37:439–47.PubMedGoogle Scholar

  • 42.

    Watts GF, Naoumova RP, Kelly JM, Riches FM, Croft KD, Thompson GR. Inhibition of cholesterogenesis decreases hepatic secretion of apoB-100 in normolipidemic subjects. Am J Physiol 1997;273:E462–70.PubMedGoogle Scholar

  • 43.

    Zhang Z, Cianflone K, Sniderman AD. Role of cholesterol ester mass in regulation of secretion of ApoB100 lipoprotein particles by hamster hepatocytes and effects of statins on that relationship. Arterioscler Thromb Vasc Biol 1999;19:743–52.PubMedCrossrefGoogle Scholar

  • 44.

    Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA 1993;90:11603–7.CrossrefGoogle Scholar

  • 45.

    Streicher R, Kotzka J, Muller-Wieland D, Siemeister G, Munck M, Avci H, Krone W. SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J Biol Chem 1996;271:7128–33.PubMedCrossrefGoogle Scholar

  • 46.

    Zhang Y, Lei T, Huang JF, Wang SB, Zhou LL, Yang ZQ, Chen XD. The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol Cell Endocrinol 2011;342:41–7.CrossrefPubMedGoogle Scholar

  • 47.

    De Sousa-Coelho AL, Relat J, Hondares E, Perez-Marti A, Ribas F, Villarroya F, Marrero PF, Haro D. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 2013;54:1786–97.CrossrefPubMedGoogle Scholar

  • 48.

    Do HT, Tselykh TV, Makela J, Ho TH, Olkkonen VM, Bornhauser BC, Korhonen L, Zelcer N, Lindholm D. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting saposin-like protein (Msap). J Biol Chem 2012;287:12602–11.PubMedCrossrefGoogle Scholar

  • 49.

    Kaess BM, Barnes TA, Stark K, Charchar FJ, Waterworth D, Song K, Wang WY, Vollenweider P, Waeber G, Mooser V, Zukowska-Szczechowska E, Samani NJ, Hengstenberg C, Tomaszewski M. FGF21 signalling pathway and metabolic traits-genetic association analysis. Eur J Hum Genet 2010;18:1344–8.CrossrefGoogle Scholar

  • 50.

    Wang WF, Li SM, Ren GP, Zheng W, Lu YJ, Yu YH, Xu WJ, Li TH, Zhou LH, Liu Y, Li DS. Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats. Endocrine 2015;49:119–29.CrossrefPubMedGoogle Scholar

  • 51.

    Tsubakio-Yamamoto K, Matsuura F, Koseki M, Oku H, Sandoval JC, Inagaki M, Nakatani K, Nakaoka H, Kawase R, Yuasa-Kawase M, Masuda D, Ohama T, Maeda N, Nakagawa-Toyama Y, Ishigami M, Nishida M, Kihara S, Shimomura I, Yamashita S. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem Biophys Res Commun 2008;375:390–4.CrossrefPubMedGoogle Scholar

  • 52.

    Wang M, Wang D, Zhang Y, Wang X, Liu Y, Xia M. Adiponectin increases macrophages cholesterol efflux and suppresses foam cell formation in patients with type 2 diabetes mellitus. Atherosclerosis 2013;229:62–70.CrossrefPubMedGoogle Scholar

  • 53.

    Ohashi K, Ouchi N, Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie 2012;94:2137–42.CrossrefPubMedGoogle Scholar

  • 54.

    Kahleova H, Matoulek M, Malinska H, Oliyarnik O, Kazdova L, Neskudla T, Skoch A, Hajek M, Hill M, Kahle M, Pelikanova T. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med 2011;28:549–59.CrossrefPubMedGoogle Scholar

  • 55.

    Sutliffe JT, Wilson LD, de Heer HD, Foster RL, Carnot MJ. C-reactive protein response to a vegan lifestyle intervention. Complement Ther Med 2015;23:32–7.CrossrefPubMedGoogle Scholar

  • 56.

    Bloomer RJ, Kabir MM, Canale RE, Trepanowski JF, Marshall KE, Farney TM, Hammond KG. Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women. Lipids Health Dis 2010;9:94.CrossrefGoogle Scholar

  • 57.

    Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem 2006;17:365–73.PubMedCrossrefGoogle Scholar

  • 58.

    Rocha DM, Faloona GR, Unger RH. Glucagon-stimulating activity of 20 amino acids in dogs. J Clin Invest 1972;51:2346–51.PubMedCrossrefGoogle Scholar

  • 59.

    Arafat AM, Kaczmarek P, Skrzypski M, Pruszynska-Oszmalek E, Kolodziejski P, Szczepankiewicz D, Sassek M, Wojciechowicz T, Wiedenmann B, Pfeiffer AF, Nowak KW, Strowski MZ. Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis? Diabetologia 2013;56:588–97.CrossrefGoogle Scholar

  • 60.

    Habegger KM, Stemmer K, Cheng C, Muller TD, Heppner KM, Ottaway N, Holland J, Hembree JL, Smiley D, Gelfanov V, Krishna R, Arafat AM, Konkar A, Belli S, Kapps M, Woods SC, Hofmann SM, D’Alessio D, Pfluger PT, Perez-Tilve D, Seeley RJ, Konishi M, Itoh N, Kharitonenkov A, Spranger J, DiMarchi RD, Tschop MH. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 2013;62:1453–63.CrossrefPubMedGoogle Scholar

  • 61.

    Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ, Tontonoz P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 2006;12:1048–55.PubMedCrossrefGoogle Scholar

  • 62.

    Min AK, Bae KH, Jung YA, Choi YK, Kim MJ, Kim JH, Jeon JH, Kim JG, Lee IK, Park KG. Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression. Endocrinology 2014;155:2924–31.CrossrefPubMedGoogle Scholar

  • 63.

    Edwards PA, Lan SF, Fogelman AM. The effect of glucagon on the synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res 1986;27:398–403.PubMedGoogle Scholar

  • 64.

    Newby PK, Tucker KL, Wolk A. Risk of overweight and obesity among semivegetarian, lactovegetarian, and vegan women. Am J Clin Nutr 2005;81:1267–74.CrossrefPubMedGoogle Scholar

  • 65.

    Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 2009;32:791–6.PubMedCrossrefGoogle Scholar

  • 66.

    McCarty MF. Dietary saturate/unsaturate ratio as a determinant of adiposity. Med Hypotheses 2010;75:14–16.CrossrefPubMedGoogle Scholar

  • 67.

    Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 2003;419:101–9.PubMedCrossrefGoogle Scholar

  • 68.

    Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol (1985) 2006;100:1467–74.CrossrefPubMedGoogle Scholar

  • 69.

    Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000;49:1939–45.CrossrefPubMedGoogle Scholar

  • 70.

    Kennedy A, Martinez K, Chuang CC, LaPoint K, McIntosh M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J Nutr 2009;139:1–4.PubMedCrossrefGoogle Scholar

  • 71.

    Walldius G, Jungner I. The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy--a review of the evidence. J Intern Med 2006;259:493–519.CrossrefGoogle Scholar

  • 72.

    Sniderman AD, Faraj M. Apolipoprotein B, apolipoprotein A-I, insulin resistance and the metabolic syndrome. Curr Opin Lipidol 2007;18:633–7.PubMedCrossrefGoogle Scholar

  • 73.

    Sierra-Johnson J, Romero-Corral A, Somers VK, Lopez-Jimenez F, Walldius G, Hamsten A, Hellenius ML, Fisher RM. ApoB/apoA-I ratio: an independent predictor of insulin resistance in US non-diabetic subjects. Eur Heart J 2007;28:2637–43.CrossrefPubMedGoogle Scholar

  • 74.

    Zhong L, Li Q, Jiang Y, Cheng D, Liu Z, Wang B, Luo R, Cheng Q, Qing H. The ApoB/ApoA1 ratio is associated with metabolic syndrome and its components in a Chinese population. Inflammation 2010;33:353–8.CrossrefGoogle Scholar

  • 75.

    Jung CH, Hwang JY, Yu JH, Shin MS, Bae SJ, Park JY, Kim HK, Lee WJ. The value of apolipoprotein B/A1 ratio in the diagnosis of metabolic syndrome in a Korean population. Clin Endocrinol (Oxf) 2012;77:699–706.CrossrefGoogle Scholar

  • 76.

    Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 2013;23:292–9.PubMedCrossrefGoogle Scholar

  • 77.

    Fang X, An P, Wang H, Wang X, Shen X, Li X, Min J, Liu S, Wang F. Dietary intake of heme iron and risk of cardiovascular disease: a dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis 2015;25:24–35.PubMedCrossrefGoogle Scholar

  • 78.

    Ellam TJ, Chico TJ. Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis 2012;220:310–8.PubMedCrossrefGoogle Scholar

  • 79.

    Chang AR, Lazo M, Appel LJ, Gutierrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr 2014;99:320–7.CrossrefPubMedGoogle Scholar

  • 80.

    Gutierrez OM. The connection between dietary phosphorus, cardiovascular disease, and mortality: where we stand and what we need to know. Adv Nutr 2013;4:723–9.PubMedCrossrefGoogle Scholar

  • 81.

    Lin RY, Choudhury RP, Cai W, Lu M, Fallon JT, Fisher EA, Vlassara H. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2003;168:213–20.CrossrefPubMedGoogle Scholar

  • 82.

    McCarty MF. The low-AGE content of low-fat vegan diets could benefit diabetics-though concurrent taurine supplementation may be needed to minimize endogenous AGE production. Med Hypotheses 2005;64:394–8.CrossrefPubMedGoogle Scholar

  • 83.

    Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 2010;110:911–6.CrossrefGoogle Scholar

  • 84.

    Jenkins DJ, Kendall CW, Marchie A, Faulkner D, Vidgen E, Lapsley KG, Trautwein EA, Parker TL, Josse RG, Leiter LA, Connelly PW. The effect of combining plant sterols, soy protein, viscous fibers, and almonds in treating hypercholesterolemia. Metabolism 2003;52:1478–83.PubMedCrossrefGoogle Scholar

  • 85.

    Wang X, Ouyang YY, Liu J, Zhao G. Flavonoid intake and risk of CVD: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 2014;111:1–11.PubMedGoogle Scholar

  • 86.

    Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD. Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 2008;88:1018–25.CrossrefPubMedGoogle Scholar

  • 87.

    Kapil V, Weitzberg E, Lundberg JO, Ahluwalia A. Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 2014;38:45–57.CrossrefPubMedGoogle Scholar

  • 88.

    Bondonno CP, Croft KD, Hodgson JM. Dietary nitrate, nitric oxide and cardiovascular health. Crit Rev Food Sci Nutr 2015; May 15:0.Google Scholar

  • 89.

    Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 2013;346:f1378.CrossrefPubMedGoogle Scholar

  • 90.

    McCormack JG, Barr RL, Wolff AA, Lopaschuk GD. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 1996;93:135–42.CrossrefPubMedGoogle Scholar

  • 91.

    McCarty MF. A shift in myocardial substrate, improved endothelial function, and diminished sympathetic activity may contribute to the anti-anginal impact of very-low-fat diets. Med Hypotheses 2004;62:62–71.CrossrefPubMedGoogle Scholar

  • 92.

    Lam A, Lopaschuk GD. Anti-anginal effects of partial fatty acid oxidation inhibitors. Curr Opin Pharmacol 2007;7:179–85.CrossrefPubMedGoogle Scholar

  • 93.

    McCarty MF. Optimizing exercise for fat loss. Med Hypotheses 1995;44:325–30.CrossrefPubMedGoogle Scholar

  • 94.

    Bahadori B, McCarty MF, Barroso-Aranda J, Gustin JC, Contreras F. A “mini-fast with exercise” protocol for fat loss. Med Hypotheses 2009;73:619–22.CrossrefGoogle Scholar

  • 95.

    Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2014;100:278–88.CrossrefPubMedGoogle Scholar

  • 96.

    Grosso G, Yang J, Marventano S, Micek A, Galvano F, Kales SN. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: a systematic review and meta-analysis of epidemiologic studies. Am J Clin Nutr 2015;101:783–93.CrossrefGoogle Scholar

About the article

Corresponding author: Mark F. McCarty, Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA 92009, USA, Phone: +760-216-7272, Fax: +760-704-6379, E-mail:


Received: 2015-10-25

Accepted: 2016-01-06

Published Online: 2016-02-12


Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 30, Issue 1, 20150056, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2015-0056.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Jadwiga Ambroszkiewicz, Magdalena Chełchowska, Grażyna Rowicka, Witold Klemarczyk, Małgorzata Strucińska, and Joanna Gajewska
Nutrients, 2018, Volume 10, Number 9, Page 1241

Comments (0)

Please log in or register to comment.
Log in