Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

4 Issues per year


CiteScore 2017: 2.48

SCImago Journal Rank (SJR) 2017: 1.021
Source Normalized Impact per Paper (SNIP) 2017: 0.830

Online
ISSN
1868-1891
See all formats and pricing
More options …
Volume 30, Issue 1

Issues

Modulation of energy balance by fibroblast growth factor 21

Daniel Cuevas-Ramos
  • Corresponding author
  • Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Sección XVI, Tlalpan 14000, Mexico City, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos A. Aguilar-Salinas
  • Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-20 | DOI: https://doi.org/10.1515/hmbci-2016-0023

Abstract

Fibroblast growth factors (FGFs) are a superfamily of 22 proteins related to cell proliferation and tissue repair after injury. A subgroup of three proteins, FGF19, FGF21, and FGF23, are major endocrine mediators. These three FGFs have low affinity to heparin sulfate during receptor binding; in contrast they have a strong interaction with the cofactor Klotho/β-Klotho. FGF21 has received particular attention because of its key role in carbohydrate, lipids, and energy balance regulation. FGF21 improves glucose and lipids metabolism as well as increasing energy expenditure in animal models and humans. Conditions that induce human physical stress such as exercise, lactation, obesity, insulin resistance, and type 2 diabetes influence FGF21 circulating levels. FGF21 also has an anti-oxidant function in human metabolic diseases which contribute to understanding the FGF21 compensatory increment in obesity, the metabolic syndrome, and type 2 diabetes. Interestingly, energy expenditure and weight loss is induced by FGF21. The mechanism involved is through “browning” of white adipose tissue, increasing brown adipose tissue activity and heat production. Therefore, clinical evaluation of therapeutic action of exogenous FGF21 administration is warranted, particularly to treat diabetes and obesity.

Keywords: browning; exercise; free fatty acids; FGF21; glucose; klotho; lipids; oxidative stress

References

  • 1.

    Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 1974;249:123–7.PubMedCrossrefGoogle Scholar

  • 2.

    Galzle ZK, Smith JA. Fibroblast growth factors and their receptors. Biochem Cell Biol 1997;75:669–85.CrossrefPubMedGoogle Scholar

  • 3.

    Powers CJ. Fibroblast growth factors, their receptors and signaling. Endocrinol Relat Cancer 2000;7:165–97.CrossrefGoogle Scholar

  • 4.

    Ornitz DM, Itoh N. Fibroblast growth factors. Biology 2001;2:3005.1–3005.12.Google Scholar

  • 5.

    Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab 2008;19:239–45.PubMedCrossrefGoogle Scholar

  • 6.

    Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA. Transgenic mice expressing human fibroblast growth factor 19 display increased metabolic rate and decreased adiposity. Endocrinology 2002;143:1741–7.CrossrefGoogle Scholar

  • 7.

    Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005;115:1627–35.CrossrefPubMedGoogle Scholar

  • 8.

    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429–35.PubMedGoogle Scholar

  • 9.

    Zhang F, Yu L, Lin X, Cheng P, He L, Li X, Lu X, Tan Y, Yang H, Cai L, Zhang C. Minireview: roles of fibroblast growth factors 19 an d21 in metabolic regulation and chronic diseases. Mol Endocrinol 2015;29:1400–13.CrossrefGoogle Scholar

  • 10.

    Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuro-o M, Lanske B, Razzaque MS, Mohammadi M. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007;27:3417–28.CrossrefGoogle Scholar

  • 11.

    Kurosu H, Kuro-o M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 2009;299:72–8.CrossrefPubMedGoogle Scholar

  • 12.

    Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008;57:1246–53.PubMedCrossrefGoogle Scholar

  • 13.

    Reyes García R, García-Martín A, García-Fontana B, Morales-Santana S, Rozas-Moreno P, Muñoz-Torres M. FGF23 in type 2 diabetic patients: relationship with bone metabolism and vascular disease. Diabetes Care 2014;37:e89–90.CrossrefPubMedGoogle Scholar

  • 14.

    Potthoff M, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012;26:312–24.PubMedCrossrefGoogle Scholar

  • 15.

    Cuevas-Ramos D, Aguilar-Salinas CA, Gómez-Pérez FJ. Metabolic actions of fibroblast growth factor 21. Curr Opin Pediatr 2012;24:523–9.CrossrefPubMedGoogle Scholar

  • 16.

    Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 2013;95:692–9.CrossrefPubMedGoogle Scholar

  • 17.

    Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010;11: 206–12.CrossrefPubMedGoogle Scholar

  • 18.

    Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011;286:12983–90.PubMedCrossrefGoogle Scholar

  • 19.

    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012;26:271–81.CrossrefGoogle Scholar

  • 20.

    Cuevas-Ramos D, Almeda-Valdes P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, Mehta R, Oseguera-Moguel J, Aguilar-Salinas CA. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 2012;7:e38022.PubMedCrossrefGoogle Scholar

  • 21.

    Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 2013;8:e63517.PubMedCrossrefGoogle Scholar

  • 22.

    Hansen JS, Clemmesen JO, Secher NH, Hoene M, Drescher A, Weigert C, Pedersen BK, Plomgaard P. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol Metab 2015;4:551–60.CrossrefPubMedGoogle Scholar

  • 23.

    Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A, Perugini J, Kopecky P, Giralt M, Cinti S, Kopecky J, Villarroya F. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 2014;63:312–7.CrossrefPubMedGoogle Scholar

  • 24.

    Lin Z, Zhou Z, Liu Y, Gong Q, Yan X, Xiao J, Wang X, Lin S, Feng W, Li X. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One 2011;6:e18398.CrossrefPubMedGoogle Scholar

  • 25.

    Schoenberg KM, Giesy SL, Harvatine KJ, Waldron MR, Cheng C, Kharitonenkov A, Boisclair YR. Plasma FGF21 is elevated by the intense lipid mobilization of lactation. Endocrinology 2011;152:4652–61.CrossrefPubMedGoogle Scholar

  • 26.

    Yu J, Zhao L, Wang A, Eleswarapu S, Ge X, Chen D, Jiang H. Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5. Endocrinology 2012;153:750–58.CrossrefPubMedGoogle Scholar

  • 27.

    Lin Z, Wu Z, Yin X, Liu Y, Yan X, Lin S, Xiao J, Wang X, Feng W, Li X. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS One 2010;5:e15534.PubMedCrossrefGoogle Scholar

  • 28.

    Lee Y, Park YJ, Ahn HY, Lim JA, Park KU, Choi SH, Park do J, Oh BC, Jang HC, Yi KH. Plasma FGF21 levels are increased in patients with hypothyroidism independently of lipid profile. Endocrine J 2013;60:977–83.CrossrefGoogle Scholar

  • 29.

    Stepan H, Kley K, Hindricks J, Kralisch S, Jank A, Schaarschmidt W, Schrey S, Ebert T, Lössner U, Kratzsch J, Blüher M, Stumvoll M, Richter J, Fasshauer M. Serum levels of the adipokine fibroblast growth factor21 are increased in preeclampsia. Cytokine 2013;62:322–6.CrossrefGoogle Scholar

  • 30.

    Kharitonenkov A, Larsen P. FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab 2011;22:81–6.CrossrefPubMedGoogle Scholar

  • 31.

    Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000;1492:203–6.PubMedCrossrefGoogle Scholar

  • 32.

    Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, Mu J, Thompson JR, Berger JP, Wong KK. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic state. Mol Pharmacol 2008;74:403–12.CrossrefGoogle Scholar

  • 33.

    Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS Lett 2008;582:3805–10.PubMedCrossrefGoogle Scholar

  • 34.

    Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, Gabrielli LA, Sitges M, Giralt M, van Bilsen M, Villarroya F. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 2013;4:2019.PubMedGoogle Scholar

  • 35.

    Ming AY, Yoo E, Vorontsov EN, Altamentova SM, Kilkenny DM, Rocheleau JV. Dynamics and distribution of Klothoβ (KLB) and fibroblast growth factor receptor-1 (FGFR1) in living cells reveal the fibroblast growth factor-21 (FGF21)-induced receptor complex. J Biol Chem 2012;287:19997–20006.CrossrefPubMedGoogle Scholar

  • 36.

    Adams AC, Cheng CC, Coskun T, Kharitonenkov A. FGF21 requires βklotho to act in vivo. PLoS One 2012;7:e49977.PubMedCrossrefGoogle Scholar

  • 37.

    Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007;282:26687–95.PubMedCrossrefGoogle Scholar

  • 38.

    Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 2012;7:e33870.CrossrefPubMedGoogle Scholar

  • 39.

    Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006;55:2470–8.PubMedCrossrefGoogle Scholar

  • 40.

    Oishi K, Uchida D, Ishida N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett 2008;582:3639–42.CrossrefPubMedGoogle Scholar

  • 41.

    Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPAR-alpha mediated induction of FGF21. Cell Metab 2007;5:415–25.CrossrefPubMedGoogle Scholar

  • 42.

    Lundàsen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 2007;360:437–40.CrossrefPubMedGoogle Scholar

  • 43.

    Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPAR-alpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007;5:426–37.CrossrefPubMedGoogle Scholar

  • 44.

    Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B, Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPAR-alpha activation in man. Cell Metab 2008;8:169–74.CrossrefPubMedGoogle Scholar

  • 45.

    Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 2009;106:10853–8.CrossrefGoogle Scholar

  • 46.

    Fazeli PK, Lun M, Kim SM, Bredella MA, Wright S, Zhang Y, Lee H, Catana C, Klibanski A, Patwari P, Steinhauser ML. FGF21 and the late adaptive response to starvation in humans. J Clin Invest 2015;125:4601–11.CrossrefPubMedGoogle Scholar

  • 47.

    Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, Lam KS, Xu A. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem 2011;286:34559–66.PubMedCrossrefGoogle Scholar

  • 48.

    Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J, Jia W. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012;61:797–806.CrossrefPubMedGoogle Scholar

  • 49.

    Adams AC, Astapova I, Fisher FM, Badman MK, Kurgansky KE, Flier JS, Hollenberg AN, Maratos-Flier E. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J Biol Chem 2010;285:14078–82.CrossrefGoogle Scholar

  • 50.

    Li Y, Wong K, Walsh K, Gao B, Zang M. Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem 2013;288:10490–504.CrossrefPubMedGoogle Scholar

  • 51.

    Wang Y, Solt LA, Burris TP. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem 2010;285:15668–73.PubMedCrossrefGoogle Scholar

  • 52.

    Kim H, Mendez R, Zheng Z, Chang L, Cai J, Zhang R, Zhang K. Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21. Endocrinology 2014;155:769–82.PubMedCrossrefGoogle Scholar

  • 53.

    Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, Ding H, Lam KS, Xu A. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 2014;63:4064–75.CrossrefPubMedGoogle Scholar

  • 54.

    Patel R, Bookout AL, Magomedova L, Owen BM, Consiglio GP, Shimizu M, Zhang Y, Mangelsdorf DJ, Kliewer SA, Cummins C. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol Endocrinol 2015;29:213–23.CrossrefGoogle Scholar

  • 55.

    Maruyama R, Shimizu M, Li J, Inoue J, Sato R. Fibroblast growth factor 21 induction by activating transcription factor 4 is regulated through three amino acid response elements in its promoter region. Biosci Biotechnol Biochem 2016;24:1–6.Google Scholar

  • 56.

    Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, Mohammadi M, Potthoff MJ. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014;63:4057–63.CrossrefPubMedGoogle Scholar

  • 57.

    Uebanso T, Taketani Y, Yamamoto H, Amo K, Ominami H, Arai H, Takei Y, Masuda M, Tanimura A, Harada N, Yamanaka-Okumura H, Takeda E. Paradoxical regulation of human FGF21 by both fasting and feeding signals: is FGF21 a nutritional adaptation factor? PLoS One 2011;6:e22976.PubMedCrossrefGoogle Scholar

  • 58.

    Wang H, Qiang L, Farmer SR. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol 2008;28:188–200.PubMedCrossrefGoogle Scholar

  • 59.

    Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 2013;24:257–68.CrossrefPubMedGoogle Scholar

  • 60.

    Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol Metab 2014;8:51–7.Google Scholar

  • 61.

    Samms RJ, Murphy M, Fowler MJ, Cooper S, Emmerson P, Coskun T, Adams AC, Kharitonenkov A, Ebling FJ, Tsintzas K. Dual effects of fibroblast growth factor 21 on hepatic energy metabolism. J Endocrinol 2015;227:37–47.CrossrefPubMedGoogle Scholar

  • 62.

    Kim KH, Lee MS. FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes Metab J 2014;38:245–51.CrossrefPubMedGoogle Scholar

  • 63.

    Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim do H, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 2013;19:83–92.CrossrefPubMedGoogle Scholar

  • 64.

    Kubicky RA, Wu S, Kharitonenkov A, De Luca F. Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. Endocrinology 2012;153:2287–95.PubMedCrossrefGoogle Scholar

  • 65.

    Lips MA, de Groot GH, Berends FJ, Wiezer R, van Wagensveld BA, Swank DJ, Luijten A, van Dijk KW, Pijl H, Jansen PL, Schaap FG. Calorie restriction and Roux-en-Y gastric bypass have opposing effects on circulating FGF21 in morbidly obese subjects. Clin Endocrinol (Oxf) 2014;81:862–70.PubMedCrossrefGoogle Scholar

  • 66.

    Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Münzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD. FGF21 is an endocrine signal of protein restriction. J Clin Invest 2014;124:3913–22.PubMedCrossrefGoogle Scholar

  • 67.

    De Sousa-Coelho AL, Marrero PF, Haro D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 2012;443:165–71.CrossrefPubMedGoogle Scholar

  • 68.

    De Sousa-Coelho AL, Relat J, Hondares E, Pérez-Martí A, Ribas F, Villarroya F, Marrero PF, Haro D. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 2013;54:1786–97.CrossrefPubMedGoogle Scholar

  • 69.

    Ables GP, Perrone CE, Orentreich D, Orentreich N. Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS One 2012;7:e51357.CrossrefPubMedGoogle Scholar

  • 70.

    Lees EK, Król E, Grant L, Shearer K, Wyse C, Moncur E, Bykowska AS, Mody N, Gettys TW, Delibegovic M. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 2014;13:817–27.CrossrefPubMedGoogle Scholar

  • 71.

    Fisher FM, Chui PC, Nasser IA, Popov Y, Cunniff JC, Lundasen T, Kharitonenkov A, Schuppan D, Flier JS, Maratos-Flier E. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014;147:1073–83.e6.PubMedCrossrefGoogle Scholar

  • 72.

    Gimeno RE, Moller DE. FGF21-based pharmacotherapy – potential utility for metabolic disorders. Trends Endocrinol Metab 2014;25:303–11.PubMedCrossrefGoogle Scholar

  • 73.

    Kharitonenkov A, DiMarchi R. FGF21 Revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol Metab 2015;26:608–17.CrossrefPubMedGoogle Scholar

  • 74.

    Véniant MM, Hale C, Helmering J, Chen MM, Stanislaus S, Busby J, Vonderfecht S, Xu J, Lloyd DJ. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS One 2012;7:e40164.PubMedCrossrefGoogle Scholar

  • 75.

    Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y, Kharitonenkov A. The breadth of FGF21’s metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012;2:31–7.PubMedGoogle Scholar

  • 76.

    Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, Itoh N, Wang Y, Bornstein SR, Xu A, Li X. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 2013;17:779–89.PubMedCrossrefGoogle Scholar

  • 77.

    Schlein C, Talukdar S, Heine M, Fischer AW, Krott LM, Nilsson SK, Brenner MB, Heeren J, Scheja L. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown dipose tissues. Cell Metab 2016;23:441–53.CrossrefGoogle Scholar

  • 78.

    Planavila A, Redondo-Angulo I, Ribas F, Garrabou G, Casademont J, Giralt M, Villarroya F. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res 2015;106:19–31.PubMedCrossrefGoogle Scholar

  • 79.

    Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, Guse K, Hemminki A, Peltola-Mjøsund KE, Tulkki V, Oresic M, Moraes CT, Pietiläinen K, Hovatta I, Suomalainen A. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet 2010;19:3948–58.CrossrefPubMedGoogle Scholar

  • 80.

    Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J 2014;463:191–9.PubMedCrossrefGoogle Scholar

  • 81.

    Tanajak P, Chattipakorn SC, Chattipakorn N. Effects of fibroblast growth factor 21 on the heart. J Endocrinol 2015;227:R13–30.CrossrefPubMedGoogle Scholar

  • 82.

    Giannini C, Feldstein AE, Santoro N, Kim G, Kursawe R, Pierpont B, Caprio S. Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage. J Clin Endocrinol Metab 2013;98:2993–3000.CrossrefPubMedGoogle Scholar

  • 83.

    Yang C, Lu W, Lin T, You P, Ye M, Huang Y, Jiang X, Wang C, Wang F, Lee MH, Yeung SC, Johnson RL, Wei C, Tsai RY, Frazier ML, McKeehan WL, Luo Y. Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol 2013;13:67.PubMedCrossrefGoogle Scholar

  • 84.

    Zhang Q, Li Y, Liang T, Lu X, Liu X, Zhang C, Jiang X, Martin RC, Cheng M, Cai L. Loss of FGF21 in diabetic mouse during hepatocellular carcinogenetic transformation. Am J Cancer Res 2015;5:1762–74.PubMedGoogle Scholar

  • 85.

    Kim HW, Lee JE, Cha JJ, Hyun YY, Kim JE, Lee MH, Song HK, Nam DH, Han JY, Han SY, Han KH, Kang YS, Cha DR. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 2013;154:3366–76.CrossrefPubMedGoogle Scholar

  • 86.

    Stein S, Bachmann A, Lössner U, Kratzsch J, Blüher M, Stumvoll M, Fasshauer M. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care 2009;32:126–8.PubMedCrossrefGoogle Scholar

  • 87.

    Jian WX, Peng WH, Jin J, Chen XR, Fang WJ, Wang WX, Qin L, Dong Y, Su Q. Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metabolism 2012;61:853–9.PubMedCrossrefGoogle Scholar

  • 88.

    Yan H, Xia M, Chang X, Xu Q, Bian H, Zeng M, Rao S, Yao X, Tu Y, Jia W, Gao X. Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study. PLoS One 2011;6:e24895.CrossrefGoogle Scholar

  • 89.

    Mutanen A, Heikkilä P, Lohi J, Raivio T, Jalanko H, Pakarinen MP. Serum FGF21 increases with hepatic fat accumulation in pediatric onset intestinal failure. J Hepatol 2014;60:183–90.PubMedCrossrefGoogle Scholar

  • 90.

    Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 2013;1:483–91.PubMedCrossrefGoogle Scholar

  • 91.

    Lü Y, Liu JH, Zhang LK, DU J, Zeng XJ, Hao G, Huang J, Zhao DH, Wang GZ, Zhang YC. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells. Chinese Med J 2010;123:3417–21.Google Scholar

  • 92.

    Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 2009;11:497–508.CrossrefPubMedGoogle Scholar

  • 93.

    Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 2006;46:113–40.PubMedCrossrefGoogle Scholar

  • 94.

    Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007;47:89–116.PubMedCrossrefGoogle Scholar

  • 95.

    Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ, Johnson JA. Nrf2, a multi-organ protector? FASEB J 2005;19:1061–6.PubMedCrossrefGoogle Scholar

  • 96.

    Sykiotis GP, Bohmann D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci Signal 2010;3:re3.PubMedGoogle Scholar

  • 97.

    Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004;10:549–57.CrossrefPubMedGoogle Scholar

  • 98.

    Sykiotis GP, Habeos IG, Samuelson AV, Bohmann D. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care 2011;141:41–8.Google Scholar

  • 99.

    Pi J, Leung L, Xue P, Wang W, Hou Y, Liu D, Yehuda-Shnaidman E, Lee C, Lau J, Kurtz TW, Chan JY. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem 2010;285:9292–300.PubMedCrossrefGoogle Scholar

  • 100.

    Chartoumpekis DV, Ziros PG, Psyrogiannis AI, Papavassiliou AG, Kyriazopoulou VE, Sykiotis GP, Habeos IG. Nrf2 represses FGF21 during long-term high-fat diet–induced obesity in mice. Diabetes 2011;60:2465–73.CrossrefPubMedGoogle Scholar

  • 101.

    Zhang C, Shao M, Yang H, Chen L, Yu L, Cong W, Tian H, Zhang F, Cheng P, Jin L, Tan Y, Li X, Cai L, Lu X. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One 2013;8:e82275.CrossrefPubMedGoogle Scholar

  • 102.

    Thiessen SE, Vanhorebeek I, Derese I, Gunst J, Van den Berghe G. FGF21 response to critical illness: effect of blood glucose control and relation with cellular stress and survival. J Clin Endocrinol Metab 2015;100:E1319–27.CrossrefPubMedGoogle Scholar

  • 103.

    Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. Biol Chem 2011;286:34533-41.Google Scholar

  • 104.

    Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008;149:6018–27.CrossrefPubMedGoogle Scholar

  • 105.

    Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, Kliewer SA. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 2012;16:387–93.CrossrefPubMedGoogle Scholar

  • 106.

    Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, Weiszmann J, Stevens J, Chen JS, Nuanmanee N, Gupte J, Komorowski R, Sekirov L, Hager T, Arora T, Ge H, Baribault H, Wang F, Sheng J, Karow M, Wang M, Luo Y, McKeehan W, Wang Z, Véniant MM, Li Y. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci Transl Med 2012;4:162ra153.PubMedGoogle Scholar

  • 107.

    Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A, Kahn CR. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 2014;124:515–27.PubMedCrossrefGoogle Scholar

  • 108.

    Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293:E444–52.PubMedCrossrefGoogle Scholar

  • 109.

    Nedergaard J, Bengtsson T, Cannon B. Three years with adult human brown adipose tissue. Ann N Y Acad Sci 2010;1212: E20–36.CrossrefPubMedGoogle Scholar

  • 110.

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–17.PubMedCrossrefGoogle Scholar

  • 111.

    Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F, Brans B. Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 2014;41:776–91.CrossrefPubMedGoogle Scholar

  • 112.

    Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G, Villarroya F. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond) 2015;39:121–9.PubMedCrossrefGoogle Scholar

  • 113.

    Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 2014;25:168–77.PubMedCrossrefGoogle Scholar

  • 114.

    Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009;9:203–9.PubMedCrossrefGoogle Scholar

  • 115.

    Giralt M, Gavaldà-Navarro A, Villarroya F. Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol 2015;418(Pt 1):66–73.CrossrefPubMedGoogle Scholar

  • 116.

    Véniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, Moyer C, Lloyd DJ. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab 2015;21:731–8.CrossrefPubMedGoogle Scholar

  • 117.

    Keipert S, Kutschke M, Lamp D, Brachthäuser L, Neff F, Meyer CW, Oelkrug R, Kharitonenkov A, Jastroch M. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol Metab 2015;4:537–42.CrossrefPubMedGoogle Scholar

  • 118.

    Lee P, Brychta RJ, Linderman J, Smith S, Chen KY, Celi FS. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab 2013;98:E98–102.PubMedCrossrefGoogle Scholar

  • 119.

    Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014;19:302–9.CrossrefPubMedGoogle Scholar

  • 120.

    Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos-Flier E. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 2015;156:2470–81.CrossrefPubMedGoogle Scholar

  • 121.

    Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA, Mangelsdorf DJ. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 2014;20:670–7.CrossrefPubMedGoogle Scholar

  • 122.

    Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci USA 2010;107:12553–8.CrossrefGoogle Scholar

  • 123.

    Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 2013;19:1147–52.PubMedCrossrefGoogle Scholar

  • 124.

    Harris LA, Skinner JR, Shew TM, Pietka TA, Abumrad NA, Wolins NE. Perilipin 5-driven lipid droplet accumulation in skeletal muscle stimulates the expression of fibroblast growth factor 21. Diabetes 2015;64:2757–68.PubMedCrossrefGoogle Scholar

  • 125.

    Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007;148:774–81.PubMedCrossrefGoogle Scholar

  • 126.

    Goetz R. Metabolism: adiponectin – a mediator of specific metabolic actions of FGF21. Nat Rev Endocrinol 2013;9: 506–8.PubMedCrossrefGoogle Scholar

  • 127.

    Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013;17:790–7.PubMedCrossrefGoogle Scholar

  • 128.

    Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 2015;26:22–9.CrossrefPubMedGoogle Scholar

  • 129.

    Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, Schwartz MW. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 2010;59:1817–24.CrossrefPubMedGoogle Scholar

  • 130.

    Cuevas-Ramos D, Almeda-Valdes P, Gómez-Pérez FJ, Meza-Arana CE, Cruz-Bautista I, Arellano-Campos O, Navarrete-López M, Aguilar-Salinas CA. Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. Eur J Endocrinol 2010;163:469–77.PubMedCrossrefGoogle Scholar

  • 131.

    Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 2009;32:1542–6.PubMedCrossrefGoogle Scholar

  • 132.

    Zhang J, Li Y. Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov Today 2014;19:579–89.CrossrefPubMedGoogle Scholar

  • 133.

    Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story. Mol Metab 2013;3:221–9.PubMedGoogle Scholar

  • 134.

    Ye X, Qi J, Ren G, Xu P, Wu Y, Zhu S, Yu D, Li S, Wu Q, Muhi RL, Li D. Long-lasting anti-diabetic efficacy of PEGylated FGF-21 and liraglutide in treatment of type 2 diabetic mice. Endocrine 2015;49:683–92.CrossrefPubMedGoogle Scholar

  • 135.

    Ye X, Qi J, Wu Y, Yu D, Xu P, Li S, Zhu S, Wu Q, Ren G, Li D. Comparison of PEGylated FGF-21 with insulin glargine for long-lasting hypoglycaemic effect in db/db mice. Diabetes Metab 2015;41:82–90.CrossrefPubMedGoogle Scholar

  • 136.

    Weng Y, Chabot JR, Bernardo B, Yan Q, Zhu Y, Brenner MB, Vage C, Logan A, Calle R, Talukdar S. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS One 2015;10:e0119104.PubMedCrossrefGoogle Scholar

  • 137.

    Reitman ML. FGF21 mimetic shows therapeutic promise. Cell Metab 2013;18:307–9.CrossrefPubMedGoogle Scholar

  • 138.

    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013;18:333–40.PubMedCrossrefGoogle Scholar

  • 139.

    Dong JQ, Rossulek M, Somayaji VR, Baltrukonis D, Liang Y, Hudson K, Hernandez-Illas M, Calle RA. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol 2015;80:1051–63.CrossrefGoogle Scholar

  • 140.

    Talukdar S, Zhou Y, Li D, Rossulek M, Dong J, Somayaji V, Weng Y, Clark R, Lanba A, Owen BM, Brenner MB, Trimmer JK, Gropp KE, Chabot JR, Erion DM, Rolph TP, Goodwin B, Calle RA. Cell Metab 2016;23:427–40.PubMedCrossrefGoogle Scholar

  • 141.

    Bailey C, Tahrani AA, Barnett AH. Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol 2016;4:350–9.CrossrefPubMedGoogle Scholar

  • 142.

    Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Fernø J, Salvador J, Escalada J, Dieguez C, Lopez M, Frühbeck G, Nogueiras R. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014;63:3346–58.PubMedCrossrefGoogle Scholar

About the article

Received: 2016-04-13

Accepted: 2016-05-08

Published Online: 2016-06-20


Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 30, Issue 1, 20160023, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2016-0023.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Henry H. León-Ariza, María P. Mendoza-Navarrete, María I. Maldonado-Arango, and Daniel A. Botero-Rosas
Apunts. Medicina de l'Esport, 2018
[2]
Gitanjali Srivastava and Caroline Apovian
Current Obesity Reports, 2018
[3]
Freddy J. K. Toloza, Jose O. Mantilla-Rivas, Maria C. Pérez-Matos, Maria L. Ricardo-Silgado, Martha C. Morales-Alvarez, Jairo A. Pinzón-Cortés, Maritza Pérez-Mayorga, Martha L. Arévalo-Garcia, Giovanni Tolosa-González, and Carlos O. Mendivil
Frontiers in Endocrinology, 2018, Volume 9
[4]
Miguel Ángel Gómez-Sámano, Mariana Grajales-Gómez, Julia María Zuarth-Vázquez, Ma. Fernanda Navarro-Flores, Mayela Martínez-Saavedra, Óscar Alfredo Juárez-León, Mariana G. Morales-García, Víctor Manuel Enríquez-Estrada, Francisco J. Gómez-Pérez, and Daniel Cuevas-Ramos
Redox Biology, 2017, Volume 11, Page 335

Comments (0)

Please log in or register to comment.
Log in