Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.837

See all formats and pricing
More options …
Volume 33, Issue 1


Visceral adipose tissue in patients with severe mental illness

Kai G. Kahl
  • Corresponding author
  • Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany, Phone: +49 511-5322495, Fax: +49 511-5328573
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Deuschle
  • Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brendon Stubbs
  • Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK
  • Health Service and Population Research Department, Institute of Psychiatry, King’s College London, London, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Schweiger
  • Department of Psychiatry and Psychotherapy, University of Lübeck Medical School, Lübeck, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-16 | DOI: https://doi.org/10.1515/hmbci-2018-0007



Severe mental illnesses (SMIs), i.e. major depression, schizophrenia and bipolar disorder, are associated with an elevated risk for the development of type-2 diabetes mellitus and cardiovascular disorders. Several factors have been associated with increased cardiometabolic morbidity and mortality in SMI, including lifestyle factors (smoking, inactivity, unhealthy diet), endocrine and immunologic alterations; however, the underlying mechanisms remain to be fully uncovered. It is now well accepted that visceral adipose tissue (VAT) promotes the development of cardiometabolic disorders, at least in part by inflammatory and metabolic functions.


This paper reviews studies concerning VAT, with special focus on intra-abdominal and pericardial adipose tissue, in SMI.


In patients with SMI, several studies have been performed concerning VAT. Most of these studies reported alterations of VAT particularly in patients with major depression and schizophrenia, independent of body weight and body mass index. Some of the studies also reported an increased cardiometabolic risk.


Patients with SMI are at increased risk of developing cardiometabolic disorders, and display increased amounts of VAT. As studies so far were mainly performed on patients before the onset of cardiometabolic disorders, VAT may serve as a biomarker for patients with SMI to assess cardiometabolic risks beyond established risk scores. Further, interventions aiming at reducing VAT in SMI are highly recommended in long-term multimodal treatment plans.

Keywords: bipolar disorder; cardio-vascular disease; diabetes mellitus; intra-abdominal adipose tissue; major depressive disorder; pericardial adipose tissue; risk factor; schizophrenia


  • [1]

    Nordentoft M, Wahlbeck K, Hallgren J, Westman J, Osby U, Alinaghizadeh H, et al. Excess mortality, causes of death and life expectancy in 270,770 patients with recent onset of mental disorders in Denmark, Finland and Sweden. PLoS One. 2013;8:e55176.PubMedCrossrefGoogle Scholar

  • [2]

    Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry. 2015;72:334–41.CrossrefPubMedGoogle Scholar

  • [3]

    Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry. 2017;16:163–80.PubMedCrossrefGoogle Scholar

  • [4]

    Kahl KG, Greggersen W, Schweiger U, Cordes J, Balijepalli C, Losch C, et al. Prevalence of the metabolic syndrome in unipolar major depression. Eur Arch Psychiatry Clin Neurosci. 2012;262:313–20.PubMedCrossrefGoogle Scholar

  • [5]

    Cordes J, Bechdolf A, Engelke C, Kahl KG, Balijepalli C, Losch C, et al. Prevalence of metabolic syndrome in female and male patients at risk of psychosis. Schizophr Res. 2017;181:38–42.PubMedCrossrefGoogle Scholar

  • [6]

    Vancampfort D, Vansteelandt K, Correll CU, Mitchell AJ, De Herdt A, Sienaert P, et al. Metabolic syndrome and metabolic abnormalities in bipolar disorder: a meta-analysis of prevalence rates and moderators. Am J Psychiatry. 2013;170:265–74.CrossrefPubMedGoogle Scholar

  • [7]

    Mannan M, Mamun A, Doi S, Clavarino A. Prospective associations between depression and obesity for adolescent males and females – A Systematic Review and Meta-Analysis of Longitudinal Studies. PLoS One. 2016;11:e0157240.CrossrefPubMedGoogle Scholar

  • [8]

    Polanka BM, Vrany EA, Patel J, Stewart JC. Depressive disorder subtypes as predictors of incident obesity in us adults: moderation by race/ethnicity. Am J Epidemiol. 2017;185:734–42.CrossrefGoogle Scholar

  • [9]

    Li Q, Du X, Zhang Y, Yin G, Zhang G, Walss-Bass C, et al. The prevalence, risk factors and clinical correlates of obesity in Chinese patients with schizophrenia. Psychiatry Res. 2017;251:131–6.CrossrefPubMedGoogle Scholar

  • [10]

    Zhao Z, Okusaga OO, Quevedo J, Soares JC, Teixeira AL. The potential association between obesity and bipolar disorder: a meta-analysis. J Affect Disord. 2016;202:120–3.CrossrefPubMedGoogle Scholar

  • [11]

    Vancampfort D, Mitchell AJ, De Hert M, Sienaert P, Probst M, Buys R, et al. Type 2 diabetes in patients with major depressive disorder: a meta-analysis of prevalence estimates and predictors. Depress Anxiety. 2015;32:763–73.CrossrefPubMedGoogle Scholar

  • [12]

    Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care. 2008;31:2383–90.PubMedCrossrefGoogle Scholar

  • [13]

    Suvisaari J, Keinanen J, Eskelinen S, Mantere O. Diabetes and schizophrenia. Curr Diab Rep. 2016;16:16.CrossrefPubMedGoogle Scholar

  • [14]

    Perry BI, McIntosh G, Weich S, Singh S, Rees K. The association between first-episode psychosis and abnormal glycaemic control: systematic review and meta-analysis. Lancet Psychiatry. 2016;3:1049–58.CrossrefPubMedGoogle Scholar

  • [15]

    Vancampfort D, Mitchell AJ, De Hert M, Sienaert P, Probst M, Buys R, et al. Prevalence and predictors of type 2 diabetes mellitus in people with bipolar disorder: a systematic review and meta-analysis. J Clin Psychiatry. 2015;76:1490–9.PubMedGoogle Scholar

  • [16]

    Dickerson F, Schroeder J, Katsafanas E, Khushalani S, Origoni AE, Savage C, et al. Cigarette smoking by patients with serious mental illness, 1999–2016: an increasing disparity. Psychiatr Serv. 2018;69:147–53.CrossrefPubMedGoogle Scholar

  • [17]

    Goodwin RD, Wall MM, Garey L, Zvolensky MJ, Dierker L, Galea S, et al. Depression among current, former, and never smokers from 2005 to 2013: the hidden role of disparities in depression in the ongoing tobacco epidemic. Drug Alcohol Depend. 2017;173:191–9.CrossrefPubMedGoogle Scholar

  • [18]

    Vancampfort D, Firth J, Schuch FB, Rosenbaum S, Mugisha J, Hallgren M, et al. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: a global systematic review and meta-analysis. World Psychiatry. 2017;16:308–15.PubMedCrossrefGoogle Scholar

  • [19]

    Schuch F, Vancampfort D, Firth J, Rosenbaum S, Ward P, Reichert T, et al. Physical activity and sedentary behavior in people with major depressive disorder: A systematic review and meta-analysis. J Affect Disord. 2017;210:139–50.CrossrefPubMedGoogle Scholar

  • [20]

    Molendijk M, Molero P, Ortuno Sanchez-Pedreno F, Van der Does W, Angel Martinez-Gonzalez M. Diet quality and depression risk: a systematic review and dose-response meta-analysis of prospective studies. J Affect Disord. 2018;226:346–54.CrossrefGoogle Scholar

  • [21]

    Salvi V, Grua I, Cerveri G, Mencacci C, Barone-Adesi F. The risk of new-onset diabetes in antidepressant users – A systematic review and meta-analysis. PLoS One 2017;12:e0182088.CrossrefPubMedGoogle Scholar

  • [22]

    Galling B, Roldan A, Nielsen RE, Nielsen J, Gerhard T, Carbon M, et al. Type 2 diabetes mellitus in youth exposed to antipsychotics: a systematic review and meta-analysis. JAMA Psychiatry. 2016;73:247–59.PubMedCrossrefGoogle Scholar

  • [23]

    Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21:1696–709.PubMedCrossrefGoogle Scholar

  • [24]

    Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135:373–87.CrossrefPubMedGoogle Scholar

  • [25]

    Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry. 2015;172:1075–91.CrossrefPubMedGoogle Scholar

  • [26]

    Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15.CrossrefPubMedGoogle Scholar

  • [27]

    Pinto JV, Moulin TC, Amaral OB. On the transdiagnostic nature of peripheral biomarkers in major psychiatric disorders: a systematic review. Neurosci Biobehav Rev. 2017;83:97–108.PubMedCrossrefGoogle Scholar

  • [28]

    Zahn D, Petrak F, Franke L, Hagele AK, Juckel G, Lederbogen F, et al. Cortisol, platelet serotonin content, and platelet activity in patients with major depression and type 2 diabetes: an exploratory investigation. Psychosom Med. 2015;77:145–55.PubMedCrossrefGoogle Scholar

  • [29]

    Schweiger U, Greggersen W, Rudolf S, Pusch M, Menzel T, Winn S, et al. Disturbed glucose disposal in patients with major depression;application of the glucose clamp technique. Psychosom Med. 2008;70:170–6.CrossrefPubMedGoogle Scholar

  • [30]

    Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig. 2016;26:25–42.PubMedGoogle Scholar

  • [31]

    Fujikawa T, Castorena CM, Lee S, Elmquist JK. The hypothalamic regulation of metabolic adaptations to exercise. J Neuroendocrinol. 2017;29. DOI: .CrossrefPubMedGoogle Scholar

  • [32]

    Chau YY, Bandiera R, Serrels A, Martinez-Estrada OM, Qing W, Lee M, et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol. 2014;16:367–75.PubMedCrossrefGoogle Scholar

  • [33]

    Wells JC. The evolution of human adiposity and obesity: where did it all go wrong? Dis Model Mech. 2012;5:595–607.PubMedCrossrefGoogle Scholar

  • [34]

    Nettle D, Andrews C, Bateson M. Food insecurity as a driver of obesity in humans: the insurance hypothesis. Behav Brain Sci. 2017;40:e105.PubMedCrossrefGoogle Scholar

  • [35]

    Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11:5–16.CrossrefPubMedGoogle Scholar

  • [36]

    Ulbrich EJ, Nanz D, Leinhard OD, Marcon M, Fischer MA. Whole-body adipose tissue and lean muscle volumes and their distribution across gender and age: MR-derived normative values in a normal-weight Swiss population. Magn Reson Med. 2018;79:449–58.CrossrefGoogle Scholar

  • [37]

    Whritenour J, Ko M, Zong Q, Wang J, Tartaro K, Schneider P, et al. Development of a modified lymphocyte transformation test for diagnosing drug-induced liver injury associated with an adaptive immune response. J Immunotoxicol. 2017;14:31–8.PubMedCrossrefGoogle Scholar

  • [38]

    Amato MC, Guarnotta V, Giordano C. Body composition assessment for the definition of cardiometabolic risk. J Endocrinol Invest. 2013;36:537–43.PubMedGoogle Scholar

  • [39]

    Lemos T, Gallagher D. Current body composition measurement techniques. Curr Opin Endocrinol Diabetes Obes. 2017;24:310–4.CrossrefPubMedGoogle Scholar

  • [40]

    Mongraw-Chaffin ML, Anderson CA, Allison MA, Ouyang P, Szklo M, Vaidya D, et al. Association between sex hormones and adiposity: qualitative differences in women and men in the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2015;100:E596–600.PubMedCrossrefGoogle Scholar

  • [41]

    Delivanis DA, Iniguez-Ariza NM, Zeb MH, Moynagh MR, Takahashi N, McKenzie TJ, et al. Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas. Clin Endocrinol (Oxf). 2018;88:209–16.PubMedCrossrefGoogle Scholar

  • [42]

    Henson J, Edwardson CL, Morgan B, Horsfield MA, Khunti K, Davies MJ, et al. Sedentary time and MRI-derived measures of adiposity in active versus inactive individuals. Obesity (Silver Spring). 2018;26:29–36.CrossrefPubMedGoogle Scholar

  • [43]

    Li L, Chassan RA, Bruer EH, Gower BA, Shelton RC. Childhood maltreatment increases the risk for visceral obesity. Obesity (Silver Spring). 2015;23:1625–32.CrossrefPubMedGoogle Scholar

  • [44]

    Schwarz JM, Noworolski SM, Erkin-Cakmak A, Korn NJ, Wen MJ, Tai VW, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017;153:743–52.CrossrefPubMedGoogle Scholar

  • [45]

    Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–8.CrossrefPubMedGoogle Scholar

  • [46]

    Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue–link to whole-body phenotypes. Nature Rev Endocrinol. 2015;11:90–100.CrossrefGoogle Scholar

  • [47]

    Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.CrossrefPubMedGoogle Scholar

  • [48]

    Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, et al. Role of adipokines in cardiovascular disease. Circ J. 2017;81:920–8.PubMedCrossrefGoogle Scholar

  • [49]

    Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nature Rev Endocrinol. 2015;11:363–71.CrossrefGoogle Scholar

  • [50]

    Wu FZ, Wu CC, Kuo PL, Wu MT. Differential impacts of cardiac and abdominal ectopic fat deposits on cardiometabolic risk stratification. BMC Cardiovasc Disord. 2016;16:20.PubMedCrossrefGoogle Scholar

  • [51]

    El Khoudary SR, Shields KJ, Janssen I, Budoff MJ, Everson-Rose SA, Powell LH, et al. Postmenopausal women with greater paracardial fat have more coronary artery calcification than premenopausal women: the Study of Women’s Health Across the Nation (SWAN) Cardiovascular Fat Ancillary Study. J Am heart Assoc. 2017;6:e004545.CrossrefGoogle Scholar

  • [52]

    Lu MT, Park J, Ghemigian K, Mayrhofer T, Puchner SB, Liu T, et al. Epicardial and paracardial adipose tissue volume and attenuation – Association with high-risk coronary plaque on computed tomographic angiography in the ROMICAT II trial. Atherosclerosis. 2016;251:47–54.CrossrefPubMedGoogle Scholar

  • [53]

    Lee JJ, Pedley A, Hoffmann U, Massaro JM, O’Donnell CJ, Benjamin EJ, et al. Longitudinal associations of pericardial and intrathoracic fat with progression of coronary artery calcium (from the Framingham Heart Study). Am J Cardiol. 2018;121:162–7.PubMedCrossrefGoogle Scholar

  • [54]

    Lee JJ, Yin X, Hoffmann U, Fox CS, Benjamin EJ. Relation of pericardial fat, intrathoracic fat, and abdominal visceral fat with incident atrial fibrillation (from the Framingham Heart Study). Am J Cardiol. 2016;118:1486–92.CrossrefPubMedGoogle Scholar

  • [55]

    Thakore JH, Mann JN, Vlahos I, Martin A, Reznek R. Increased visceral fat distribution in drug-naive and drug-free patients with schizophrenia. Int J Obes Relat Metab Disord. 2002;26:137–41.PubMedCrossrefGoogle Scholar

  • [56]

    Ryan MC, Flanagan S, Kinsella U, Keeling F, Thakore JH. The effects of atypical antipsychotics on visceral fat distribution in first episode, drug-naive patients with schizophrenia. Life Sci. 2004;74:1999–2008.PubMedCrossrefGoogle Scholar

  • [57]

    Gilles M, Hentschel F, Paslakis G, Glahn V, Lederbogen F, Deuschle M. Visceral and subcutaneous fat in patients treated with olanzapine: a case series. Clin Neuropharmacol. 2010;33:248–9.CrossrefPubMedGoogle Scholar

  • [58]

    Zhang ZJ, Yao ZJ, Liu W, Fang Q, Reynolds GP. Effects of antipsychotics on fat deposition and changes in leptin and insulin levels. Magnetic resonance imaging study of previously untreated people with schizophrenia. Br J Psychiatry. 2004;184:58–62.CrossrefPubMedGoogle Scholar

  • [59]

    Joseph AM, Venkatasubramanian G, Sharma PS. A six-to-ten weeks’ follow-up study on the effects of olanzapine on abdominal fat and other metabolic parameters in patients with psychoses–an imaging-based study with controls. East Asian Arch Psychiatry. 2011;21:10–6.Google Scholar

  • [60]

    Ruppert J, Hartung D, Westhoff-Bleck M, Herrmann J, Stubbs B, Cordes J, et al. Increased pericardial adipose tissue and cardiometabolic risk in patients with schizophrenia versus healthy controls. Eur Arch Psychiatry Clin Neurosci. 2017. DOI: [epub ahead of print].CrossrefPubMedGoogle Scholar

  • [61]

    Thakore JH, Richards PJ, Reznek RH, Martin A, Dinan TG. Increased intra-abdominal fat deposition in patients with major depressive illness as measured by computed tomography. Biol Psychiatry. 1997;41:1140–2.PubMedCrossrefGoogle Scholar

  • [62]

    Weber-Hamann B, Hentschel F, Kniest A, Deuschle M, Colla M, Lederbogen F, et al. Hypercortisolemic depression is associated with increased intra-abdominal fat. Psychosom Med. 2002;64:274–7.PubMedCrossrefGoogle Scholar

  • [63]

    Weber-Hamann B, Werner M, Hentschel F, Bindeballe N, Lederbogen F, et al. Metabolic changes in elderly patients with major depression: evidence for increased accumulation of visceral fat at follow-up. Psychoneuroendocrinology. 2006;31:347–54.CrossrefPubMedGoogle Scholar

  • [64]

    Kahl KG, Bester M, Greggersen W, Rudolf S, Dibbelt L, Stoeckelhuber BM, et a. Visceral fat deposition and insulin sensitivity in depressed women with and without comorbid borderline personality disorder. Psychosom Med. 2005;67:407–12.PubMedCrossrefGoogle Scholar

  • [65]

    Ludescher B, Najib A, Baar S, Machann J, Schick F, Buchkremer G, et al. Increase of visceral fat and adrenal gland volume in women with depression: preliminary results of a morphometric MRI study. Int J Psychiatry Med. 2008;38:229–40.PubMedCrossrefGoogle Scholar

  • [66]

    Everson-Rose SA, Lewis TT, Karavolos K, Dugan SA, Wesley D, Powell LH. Depressive symptoms and increased visceral fat in middle-aged women. Psychosom Med. 2009;71:410–6.CrossrefPubMedGoogle Scholar

  • [67]

    Williams LJ, Pasco JA, Henry MJ, Jacka FN, Dodd S, Nicholson GC, et al. Lifetime psychiatric disorders and body composition: a population-based study. J Affect Disord. 2009;118:173–9.PubMedCrossrefGoogle Scholar

  • [68]

    Vogelzangs N, Kritchevsky SB, Beekman AT, Brenes GA, Newman AB, Satterfield S, et al. Obesity and onset of significant depressive symptoms: results from a prospective community-based cohort study of older men and women. J Clin Psychiatry. 2010;71:391–9.PubMedCrossrefGoogle Scholar

  • [69]

    Ludescher B, Machann J, Eschweiler GW, Thamer C, Maenz C, Hipp A, et al. Active depression is associated with regional adiposity in the upper abdomen and the neck. Int J Psychiatry Med. 2011;41:271–80.PubMedCrossrefGoogle Scholar

  • [70]

    Greggersen W, Rudolf S, Fassbinder E, Dibbelt L, Stoeckelhuber BM, Hohagen F, et al. Major depression, borderline personality disorder, and visceral fat content in women. Eur Arch Psychiatry Clin Neurosci. 2011;261:551–7.CrossrefPubMedGoogle Scholar

  • [71]

    Coryell WH, Butcher BD, Burns TL, Dindo LN, Schlechte JA, Calarge CA. Fat distribution and major depressive disorder in late adolescence. J Clin Psychiatry. 2016;77:84–9.PubMedGoogle Scholar

  • [72]

    Kahl KG, Hueper K, Schweiger U, Gutberlet M, Detlef AM, Weiss C, et al. Pericardial, intra-abdominal and subcutaneous adipose tissue in patients with major depressive disorder. Acta Psychiatr Scand. 2014;130:137–43.PubMedCrossrefGoogle Scholar

  • [73]

    Kahl KG, Schweiger U, Pars K, Kunikowska A, Deuschle M, Gutberlet M, et al. Adrenal gland volume, intra-abdominal and pericardial adipose tissue in major depressive disorder. Psychoneuroendocrinology. 2015;58:1–8.PubMedCrossrefGoogle Scholar

  • [74]

    Kahl KG, Kerling A, Tegtbur U, Gutzlaff E, Herrmann J, Borchert L, et al. Effects of additional exercise training on epicardial, intra-abdominal and subcutaneous adipose tissue in major depressive disorder: a randomized pilot study. J Affect Disord. 2016;192:91–7.PubMedCrossrefGoogle Scholar

  • [75]

    Kahl KG, Herrmann J, Stubbs B, Kruger TH, Cordes J, Deuschle M, et al. Pericardial adipose tissue and the metabolic syndrome is increased in patients with chronic major depressive disorder compared to acute depression and controls. Progr Neuropsychopharmacol Biol Psychiatry. 2017;72:30–5.CrossrefGoogle Scholar

  • [76]

    Fiedorowicz JG, Andersen LE, Persons JE, Calarge C. Rapid adipose deposition with mood disorders. Ann Clin Psychiatry. 2015;27:283–8.PubMedGoogle Scholar

  • [77]

    Lasserre AM, Glaus J, Vandeleur CL, Marques-Vidal P, Vaucher J, Bastardot F, et al. Depression with atypical features and increase in obesity, body mass index, waist circumference, and fat mass: a prospective, population-based study. JAMA Psychiatry. 2014;71:880–8.CrossrefGoogle Scholar

  • [78]

    Juruena MF, Bocharova M, Agustini B, Young AH. Atypical depression and non-atypical depression: is HPA axis function a biomarker? A systematic review. J Affect Disord. 2017, DOI: [epub aheada of print].CrossrefPubMedGoogle Scholar

  • [79]

    Sharp DS, Andrew ME, Fekedulegn DB, Burchfiel CM, Violanti JM, Wactawski-Wende J, et al. The cortisol response in policemen: intraindividual variation, not concentration level, predicts truncal obesity. Am J Hum Biol. 2013;25:499–507.PubMedCrossrefGoogle Scholar

  • [80]

    Miller AL, Clifford C, Sturza J, Rosenblum K, Vazquez DM, Kaciroti N, et al. Blunted cortisol response to stress is associated with higher body mass index in low-income preschool-aged children. Psychoneuroendocrinology. 2013;38:2611–7.PubMedCrossrefGoogle Scholar

  • [81]

    Alfonso B, Araki T, Zumoff B. Is there visceral adipose tissue (VAT) intracellular hypercortisolism in human obesity? Horm Metab Res. 2013;45:329–31.CrossrefPubMedGoogle Scholar

  • [82]

    Tomiyama AJ, Dallman MF, Epel ES. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women. Psychoneuroendocrinology. 2011;36:1513–9.CrossrefPubMedGoogle Scholar

  • [83]

    Vissers D, Hens W, Hansen D, Taeymans J. The effect of diet or exercise on visceral adipose tissue in overweight youth. Med Sci Sports Exerc. 2016;48:1415–24.CrossrefPubMedGoogle Scholar

  • [84]

    Slentz CA, Bateman LA, Willis LH, Shields AT, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metab. 2011;301:E1033–9.CrossrefPubMedGoogle Scholar

  • [85]

    Gomez-Arbelaez D, Bellido D, Castro AI, Ordonez-Mayan L, Carreira J, Galban C, et al. Body composition changes after very-low-calorie ketogenic diet in obesity evaluated by 3 standardized methods. J Clin Endocrinol Metab. 2017;102:488–98.PubMedGoogle Scholar

About the article

Received: 2018-01-15

Accepted: 2018-02-15

Published Online: 2018-03-16

Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.

Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 33, Issue 1, 20180007, ISSN (Online) 1868-1891, DOI: https://doi.org/10.1515/hmbci-2018-0007.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in