Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.837

See all formats and pricing
More options …
Volume 33, Issue 1


Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk

Susan Sam
  • Corresponding author
  • University of Chicago Pritzker School of Medicine, Department of Medicine, Section of Endocrinology, 5841 S. Maryland Avenue, Chicago, IL 60637, USA, Phone: +773-702 5641, Fax: +773-702 7686
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-09 | DOI: https://doi.org/10.1515/hmbci-2018-0014


Metabolic and cardiovascular diseases are increasing worldwide due to the rise in the obesity epidemic. The metabolic consequences of obesity vary by distribution of adipose tissue. Visceral and ectopic adipose accumulation are associated with adverse cardiometabolic consequences, while gluteal-femoral adipose accumulation are negatively associated with these adverse complications and subcutaneous abdominal adipose accumulation is more neutral in its associations. Gender, race and ethnic differences in adipose tissue distribution have been described and could account for the observed differences in risk for cardiometabolic disease. The mechanisms behind the differential impact of adipose tissue on cardiometabolic risk have started to be unraveled and include differences in adipocyte biology, inflammatory profile, connection to systemic circulation and most importantly the inability of the subcutaneous adipose tissue to expand in response to positive energy balance.

Keywords: adipose tissue inflammation; androgens; ectopic fat; hepatic adipose tissue; metabolic syndrome; pericardial adipose tissue; polycystic ovary syndrome; sex hormones; type 2 diabetes


  • [1]

    Amati F, Pennant M, Azuma K, Dube JJ, Toledo FG, Rossi AP, et al. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity. 2012;20:1115–7.CrossrefGoogle Scholar

  • [2]

    Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.PubMedCrossrefGoogle Scholar

  • [3]

    Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J clin Invest. 1983;72:1150–62.CrossrefPubMedGoogle Scholar

  • [4]

    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.CrossrefPubMedGoogle Scholar

  • [5]

    Karelis AD. Metabolically healthy but obese individuals. Lancet. 2008;372:1281–3.CrossrefPubMedGoogle Scholar

  • [6]

    Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609–16.CrossrefPubMedGoogle Scholar

  • [7]

    Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168:1617–24.PubMedCrossrefGoogle Scholar

  • [8]

    Huang LO, Loos R, Kilpelainen TO. Evidence of genetic predisposition for metabolically healthy obesity and metabolically obese normal weight. Physiol Genomics. 2017. Epub Dec 20.PubMedGoogle Scholar

  • [9]

    Kang YM, Jung CH, Cho YK, Jang JE, Hwang JY, Kim EH, et al. Visceral adiposity index predicts the conversion of metabolically healthy obesity to an unhealthy phenotype. PLoS One. 2017;12. Epub June 23.Google Scholar

  • [10]

    Heianza Y, Arase Y, Tsuji H, Fujihara K, Saito K, Hsieh SD, et al. Metabolically healthy obesity, presence or absence of fatty liver, and risk of type 2 diabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 20 (TOPICS 20). J Clin Endocrinol Metab. 2014;99:2952–60.CrossrefPubMedGoogle Scholar

  • [11]

    Hashimoto Y, Hamaguchi M, Tanaka M, Obora A, Kojima T, Fukui M. Metabolically healthy obesity without fatty liver and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Res Clin Pract. 2018. Epub Jan 22.PubMedGoogle Scholar

  • [12]

    Banerji MA, Lebowitz J, Chaiken RL, Gordon D, Kral JG, Lebovitz HE. Relationship of visceral adipose tissue and glucose disposal is independent of sex in black NIDDM subjects. Am J Physiol. 1997;273(2 Pt 1):E425–32.PubMedGoogle Scholar

  • [13]

    Miyazaki Y, Glass L, Triplitt C, Wajcberg E, Mandarino LJ, DeFronzo RA. Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2002;283:E1135–43.CrossrefPubMedGoogle Scholar

  • [14]

    Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133:496–506.PubMedCrossrefGoogle Scholar

  • [15]

    Ross R, Aru J, Freeman J, Hudson R, Janssen I. Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab. 2002;282:E657–63.PubMedCrossrefGoogle Scholar

  • [16]

    Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350:2549–57.PubMedCrossrefGoogle Scholar

  • [17]

    Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord. 2002;26:193–9.PubMedCrossrefGoogle Scholar

  • [18]

    Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139:448–55.PubMedCrossrefGoogle Scholar

  • [19]

    Auclair A, Martin J, Bastien M, Bonneville N, Biertho L, Marceau S, et al. Is there a role for visceral adiposity in inducing type 2 diabetes remission in severely obese patients following biliopancreatic diversion with duodenal switch surgery? Obes Surg. 2016;26:1717–27.CrossrefGoogle Scholar

  • [20]

    Bray GA, Jablonski KA, Fujimoto WY, Barrett-Connor E, Haffner S, Hanson RL, et al. Relation of central adiposity and body mass index to the development of diabetes in the Diabetes Prevention Program. Am J Clin Nutr. 2008;87:1212–8.PubMedCrossrefGoogle Scholar

  • [21]

    Nicklas BJ, Penninx BW, Ryan AS, Berman DM, Lynch NA, Dennis KE. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care. 2003;26:1413–20.CrossrefPubMedGoogle Scholar

  • [22]

    Borel AL, Nazare JA, Smith J, Aschner P, Barter P, Van Gaal L, et al. Visceral, subcutaneous abdominal adiposity and liver fat content distribution in normal glucose tolerance, impaired fasting glucose and/or impaired glucose tolerance. Int J Obes (Lond). 2015;39:495–501.PubMedCrossrefGoogle Scholar

  • [23]

    Wander PL, Boyko EJ, Leonetti DL, McNeely MJ, Kahn SE, Fujimoto WY. Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care. 2013;36:289–93.CrossrefPubMedGoogle Scholar

  • [24]

    Basu A, Basu R, Shah P, Vella A, Rizza RA, Jensen MD. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am J physiol. 2001;280:E1000–6.Google Scholar

  • [25]

    Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes. 1996;45:1684–93.PubMedCrossrefGoogle Scholar

  • [26]

    Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995;96:88–98.PubMedCrossrefGoogle Scholar

  • [27]

    Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116:1234–41.CrossrefPubMedGoogle Scholar

  • [28]

    Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. J Am Med Assoc. 2002;288:2709–16.CrossrefGoogle Scholar

  • [29]

    Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9.CrossrefPubMedGoogle Scholar

  • [30]

    DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.CrossrefPubMedGoogle Scholar

  • [31]

    Mongraw-Chaffin M, Allison MA, Burke GL, Criqui MH, Matsushita K, Ouyang P, et al. CT-derived body fat distribution and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. J Clin Endocrinol Metab. 2017;102:4173–83.CrossrefPubMedGoogle Scholar

  • [32]

    Sam S, Haffner S, Davidson MH, D’Agostino RB, Sr., Feinstein S, Kondos G, et al. Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes. 2008;57:2022–7.CrossrefPubMedGoogle Scholar

  • [33]

    Sam S, Haffner S, Davidson MH, D’Agostino RB, Sr., Feinstein S, Kondos G, et al. Relation of abdominal fat depots to systemic markers of inflammation in type 2 diabetes. Diabetes Care. 2009;32:932–7.PubMedCrossrefGoogle Scholar

  • [34]

    Liu J, Fox CS, Hickson DA, May WD, Hairston KG, Carr JJ, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol Metab. 2010;95:5419–26.PubMedCrossrefGoogle Scholar

  • [35]

    Festa A, Williams K, D’Agostino R, Jr., Wagenknecht LE, Haffner SM. The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes. 2006;55:1114–20.PubMedCrossrefGoogle Scholar

  • [36]

    Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH. Relationship of androgenic activity to body fat topography, fat cell morphology, and metabolic aberrations in premenopausal women. J Clin Endocrinol Metab. 1983;57:304–10.PubMedCrossrefGoogle Scholar

  • [37]

    Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4:20–34.CrossrefPubMedGoogle Scholar

  • [38]

    Bjorntorp P. Hyperandrogenicity in women – a prediabetic condition? J Inten Med. 1993;234:579–83.Google Scholar

  • [39]

    Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21:415–30.CrossrefPubMedGoogle Scholar

  • [40]

    Lovejoy JC, Bray GA, Bourgeois MO, Macchiavelli R, Rood JC, Greeson C, et al. Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women – a clinical research center study. J Clin Endocrinol Metab. 1996;81:2198–203.PubMedGoogle Scholar

  • [41]

    Elbers JM, Asscheman H, Seidell JC, Megens JA, Gooren LJ. Long-term testosterone administration increases visceral fat in female to male transsexuals. J Clin Endocrinol Metab. 1997;82:2044–7.PubMedGoogle Scholar

  • [42]

    Nordstrom A, Hadrevi J, Olsson T, Franks PW, Nordstrom P. Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. J Clin Endocrinol Metab. 2016;101:3740–6.CrossrefPubMedGoogle Scholar

  • [43]

    Elffers TW, de Mutsert R, Lamb HJ, de Roos A, Willems van Dijk K, Rosendaal FR, et al. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS One. 2017;12:e0185403.PubMedCrossrefGoogle Scholar

  • [44]

    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.PubMedCrossrefGoogle Scholar

  • [45]

    Seow KM, Tsai YL, Hwang JL, Hsu WY, Ho LT, Juan CC. Omental adipose tissue overexpression of fatty acid transporter CD36 and decreased expression of hormone-sensitive lipase in insulin-resistant women with polycystic ovary syndrome. Hum Reprod. 2009;24:1982–8.PubMedCrossrefGoogle Scholar

  • [46]

    Manneras-Holm L, Leonhardt H, Kullberg J, Jennische E, Oden A, Holm G, et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab. 2011;96:E304–11.CrossrefPubMedGoogle Scholar

  • [47]

    Huang ZH, Manickam B, Ryvkin V, Zhou XJ, Fantuzzi G, Mazzone T, et al. PCOS is associated with increased CD11c expression and crown-like structures in adipose tissue and increased central abdominal fat depots independent of obesity. J Clin Endocrinol Metab. 2012;98:E17–24.PubMedGoogle Scholar

  • [48]

    Pasquali R, Casimirri F, Cantobelli S, Labate AM, Venturoli S, Paradisi R, et al. Insulin and androgen relationships with abdominal body fat distribution in women with and without hyperandrogenism. Horm Res. 1993;39:179–87.PubMedCrossrefGoogle Scholar

  • [49]

    Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:618–37.CrossrefPubMedGoogle Scholar

  • [50]

    Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes. 1992;41:1257–66.CrossrefPubMedGoogle Scholar

  • [51]

    Horejsi R, Moller R, Rackl S, Giuliani A, Freytag U, Crailsheim K, et al. Android subcutaneous adipose tissue topography in lean and obese women suffering from PCOS: comparison with type 2 diabetic women. Am J Phys Anthropol. 2004;124:275–81.CrossrefPubMedGoogle Scholar

  • [52]

    Dumesic DA, Akopians AL, Madrigal VK, Ramirez E, Margolis DJ, Sarma MK, et al. Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J Clin Endocrinol Metab. 2016;101:4178–88.PubMedCrossrefGoogle Scholar

  • [53]

    Mongraw-Chaffin ML, Anderson CA, Allison MA, Ouyang P, Szklo M, Vaidya D, et al. Association between sex hormones and adiposity: qualitative differences in women and men in the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2015;100:E596–600.PubMedCrossrefGoogle Scholar

  • [54]

    Kim C, Dabelea D, Kalyani RR, Christophi CA, Bray GA, Pi-Sunyer X, et al. Changes in visceral adiposity, subcutaneous adiposity, and sex hormones in the diabetes prevention program. J Clin Endocrinol Metab. 2017;102:3381–9.CrossrefPubMedGoogle Scholar

  • [55]

    Lim JS, Choi YJ, Kim SK, Huh BW, Lee EJ, Huh KB. Optimal waist circumference cutoff value based on insulin resistance and visceral obesity in koreans with type 2 diabetes. Diabetes Metab J. 2015;39:253–63.CrossrefPubMedGoogle Scholar

  • [56]

    Jung SH, Ha KH, Kim DJ. Visceral fat mass has stronger associations with diabetes and prediabetes than other anthropometric obesity indicators among korean adults. Yonsei Med J. 2016;57:674–80.CrossrefPubMedGoogle Scholar

  • [57]

    Tatsumi Y, Nakao YM, Masuda I, Higashiyama A, Takegami M, Nishimura K, et al. Risk for metabolic diseases in normal weight individuals with visceral fat accumulation: a cross-sectional study in Japan. BMJ Open. 2017;7:e013831.PubMedCrossrefGoogle Scholar

  • [58]

    Jorgensen ME, Borch-Johnsen K, Stolk R, Bjerregaard P. Fat distribution and glucose intolerance among Greenland Inuit. Diabetes Care. 2013;36:2988–94.CrossrefPubMedGoogle Scholar

  • [59]

    Carroll JF, Fulda KG, Chiapa AL, Rodriquez M, Phelps DR, Cardarelli KM, et al. Impact of race/ethnicity on the relationship between visceral fat and inflammatory biomarkers. Obesity (Silver Spring). 2009;17:1420–7.PubMedGoogle Scholar

  • [60]

    Hill JO, Sidney S, Lewis CE, Tolan K, Scherzinger AL, Stamm ER. Racial differences in amounts of visceral adipose tissue in young adults: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am J Clin Nutr 1999;69:381–7.CrossrefPubMedGoogle Scholar

  • [61]

    Okosun IS, Tedders SH, Choi S, Dever GE. Abdominal adiposity values associated with established body mass indexes in white, black and hispanic Americans. A study from the Third National Health and Nutrition Examination Survey. Int J Obes Relat Metab Disord. 2000;24:1279–85.CrossrefPubMedGoogle Scholar

  • [62]

    Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism. 1996;45:1119–24.CrossrefPubMedGoogle Scholar

  • [63]

    Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA 2007;104:12587–94.CrossrefGoogle Scholar

  • [64]

    Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375:2267–77.CrossrefPubMedGoogle Scholar

  • [65]

    Preis SR, Massaro JM, Hoffmann U, D’Agostino RB, Sr., Levy D, Robins SJ, et al. Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart study. J Clin Endocrinol Metab. 2010;95:3701–10.PubMedCrossrefGoogle Scholar

  • [66]

    Lee JJ, Pedley A, Therkelsen KE, Hoffmann U, Massaro JM, Levy D, et al. Upper body subcutaneous fat is associated with cardiometabolic risk factors. Am J Med. 2017;130:958–66 e1.Google Scholar

  • [67]

    Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. Journal Clin Invest. 1991;88:609–13.CrossrefGoogle Scholar

  • [68]

    Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009;30:850–6.Google Scholar

  • [69]

    Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, et al. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 2001;157:203–9.CrossrefPubMedGoogle Scholar

  • [70]

    Sato F, Maeda N, Yamada T, Namazui H, Fukuda S, Natsukawa T, et al. Association of epicardial, visceral, and subcutaneous fat with cardiometabolic diseases. Circ J. 2018 Epub 25.PubMedGoogle Scholar

  • [71]

    Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117:605–13.CrossrefGoogle Scholar

  • [72]

    Fang L, Guo F, Zhou L, Stahl R, Grams J. The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans. Adipocyte. 2015;4:273–9.PubMedCrossrefGoogle Scholar

  • [73]

    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83:847–50.PubMedGoogle Scholar

  • [74]

    Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab. 2005;90:2282–9.PubMedCrossrefGoogle Scholar

  • [75]

    Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes. 1997;46:860–7.PubMedCrossrefGoogle Scholar

  • [76]

    Festa A, D’Agostino R, Jr., Williams K, Karter AJ, Mayer-Davis EJ, et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord. 2001;25:1407–15.CrossrefPubMedGoogle Scholar

  • [77]

    Lemieux I, Pascot A, Prud’homme D, Almeras N, Bogaty P, Nadeau A, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol. 2001;21:961–7.PubMedCrossrefGoogle Scholar

  • [78]

    Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.CrossrefPubMedGoogle Scholar

  • [79]

    Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S57–63.PubMedCrossrefGoogle Scholar

  • [80]

    Arner P. Not all fat is alike. Lancet. 1998;351:1301–2.CrossrefPubMedGoogle Scholar

  • [81]

    Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996;98:741–9.CrossrefPubMedGoogle Scholar

  • [82]

    Bergman RN, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab. 2000;11:351–6.PubMedCrossrefGoogle Scholar

  • [83]

    Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004;109(21 Suppl 1):II2–10.PubMedGoogle Scholar

  • [84]

    Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. J Am Med Assoc. 1998;279:1477–82.CrossrefGoogle Scholar

  • [85]

    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.CrossrefPubMedGoogle Scholar

  • [86]

    Albert MA, Glynn RJ, Ridker PM. Plasma concentration of C-reactive protein and the calculated Framingham Coronary Heart Disease Risk Score. Circulation. 2003;108:161–5.CrossrefPubMedGoogle Scholar

  • [87]

    Park CS, Ihm SH, Yoo KD, Kim DB, Lee JM, Kim HY, et al. Relation between C-reactive protein, homocysteine levels, fibrinogen, and lipoprotein levels and leukocyte and platelet counts, and 10-year risk for cardiovascular disease among healthy adults in the USA. Am J Cardiol. 2010;105:1284–8.PubMedCrossrefGoogle Scholar

  • [88]

    Sattar N, Gaw A, Scherbakova O, Ford I, O’Reilly DS, Haffner SM, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003;108:414–9.CrossrefPubMedGoogle Scholar

  • [89]

    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossrefGoogle Scholar

  • [90]

    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.CrossrefPubMedGoogle Scholar

  • [91]

    Harman-Boehm I, Bluher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Invest. 2007;92:2240–7.Google Scholar

  • [92]

    Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009;106:15430–5.CrossrefGoogle Scholar

  • [93]

    Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–101.CrossrefPubMedGoogle Scholar

  • [94]

    Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350:1220–34.PubMedCrossrefGoogle Scholar

  • [95]

    Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, et al. PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol Endocrinol Metab. 2012;303:E1134–41.CrossrefPubMedGoogle Scholar

  • [96]

    Oliveira AL, Azevedo DC, Bredella MA, Stanley TL, Torriani M. Visceral and subcutaneous adipose tissue FDG uptake by PET/CT in metabolically healthy obese subjects. Obesity (Silver Spring). 2015;23:286–9.CrossrefPubMedGoogle Scholar

  • [97]

    Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carli M, et al. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging. 2010;3:843–51.CrossrefPubMedGoogle Scholar

  • [98]

    Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123:186–94.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-02-06

Accepted: 2018-02-10

Published Online: 2018-03-09

Author Statement

Research funding: Authors state no funding involved.

Conflict of interest: Authors state no conflict of interest.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.

Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 33, Issue 1, 20180014, ISSN (Online) 1868-1891, DOI: https://doi.org/10.1515/hmbci-2018-0014.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nicolas Linder, Kilian Solty, Anna Hartmann, Tobias Eggebrecht, Matthias Blüher, Roland Stange, and Harald Busse
BMC Medical Imaging, 2019, Volume 19, Number 1
Natalie Jo Hawes, Amanda T. Wiggins, Deborah B. Reed, and Frances Hardin‐Fanning
Public Health Nursing, 2019, Volume 36, Number 3, Page 270
Emily Harville, John Apolzan, and Lydia Bazzano
International Journal of Environmental Research and Public Health, 2018, Volume 16, Number 1, Page 15
Jessika Geisebel Oliveira Neto, Thais Bento-Bernardes, Carmen Cabanelas Pazos-Moura, and Karen Jesus Oliveira
Endocrine, 2018
Thierry H. Le Jemtel, Rohan Samson, Gregory Milligan, Abhishek Jaiswal, and Suzanne Oparil
Current Hypertension Reports, 2018, Volume 20, Number 9
Ryan Lahey and Sadiya S. Khan
Current Epidemiology Reports, 2018

Comments (0)

Please log in or register to comment.
Log in