Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

4 Issues per year


CiteScore 2017: 2.48

SCImago Journal Rank (SJR) 2017: 1.021
Source Normalized Impact per Paper (SNIP) 2017: 0.830

Online
ISSN
1868-1891
See all formats and pricing
More options …
Volume 33, Issue 2

Issues

The “adipose tissue expandability” hypothesis: a potential mechanism for insulin resistance in obese youth

Sonia Caprio / Bridget Pierpont / Romy Kursawe
Published Online: 2018-03-29 | DOI: https://doi.org/10.1515/hmbci-2018-0005

Abstract

Obesity has become a major global health challenge of the 21st century, as it is associated with the onset of type 2 diabetes (T2D) and cardiovascular complications, even at a very early age in life. The root causes of pediatric obesity remain incompletely understood. The obesity epidemic together with the relationship of obesity to the growing population burden of chronic disease presents unprecedented research opportunities and challenges. Decades of obesity-related research funded by governments around the world have yielded many important discoveries about both etiological pathways and preventive or therapeutic interventions. Yet, there is a sense that the problem is outpacing these research efforts. Obesity poses a significant risk for the development of cardiovascular disease (CVD) , diabetes and certain cancers thereby shortening life expectancy. Nevertheless, many obese individuals do not develop any of these comorbidities. One hypothesis explaining this dilemma is that total body fat is not the culprit of adverse health in obesity rather the relative proportion of lipids in various fat depots is what determines the metabolic risk. In this review, we describe the role of altered fat partitioning in youth onset obesity and its relation to fatty liver and T2D during adolescence.

Keywords: adolescence; adipose tissue distribution; adipose tissue inflammation; childhood and adolescent obesity; fatty liver; insulin resistance; type 2 diabetes

References

  • [1]

    Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, et al. Pre type 2 diabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance and altered myocellular and abdominal fat partitioning. Lancet. 2003;362:951–7.CrossrefGoogle Scholar

  • [2]

    Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002;346:802–10.CrossrefPubMedGoogle Scholar

  • [3]

    Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.CrossrefPubMedGoogle Scholar

  • [4]

    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.PubMedCrossrefGoogle Scholar

  • [5]

    Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–91.PubMedCrossrefGoogle Scholar

  • [6]

    Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Al Mamun A, Bonneux L. Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med. 2003;138:24–32.PubMedCrossrefGoogle Scholar

  • [7]

    Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.PubMedCrossrefGoogle Scholar

  • [8]

    Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet. 2000;26:13.PubMedGoogle Scholar

  • [9]

    Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.PubMedGoogle Scholar

  • [10]

    Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2007;65:S7–12.PubMedCrossrefGoogle Scholar

  • [11]

    Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome–an allostatic perspective. Biochim Biophys Acta. 2010;1801:338–49.CrossrefPubMedGoogle Scholar

  • [12]

    Taksali SE, Caprio S, Dziura J, Dufour S, Cali AM, Goodman TR, et al. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes. 2008;57:367–71.CrossrefPubMedGoogle Scholar

  • [13]

    Kursawe R, Eszlinger M, Narayan D, Liu T, Bazuine M, Cali AM, et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes. 2010;59:2288–96.PubMedCrossrefGoogle Scholar

  • [14]

    Kursawe R, Caprio S, Giannini C, Narayan D, Lin A, D’Adamo E, et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes. 2013;62:837–44.CrossrefPubMedGoogle Scholar

  • [15]

    Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, et al. A role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents. Diabetes. 2016;65:610–8.CrossrefPubMedGoogle Scholar

  • [16]

    Caprio S, Perry R, Kursawe R. Adolescent obesity and insulin resistance: roles of ectopic fat accumulation and adipose inflammation. Gastroenterology. 2017;152:1638–46.PubMedCrossrefGoogle Scholar

  • [17]

    Brambilla P, Manzoni P, Sironi S, Simone P, Del Maschio MA, di Natale B, et al. Peripheral and abdominal adiposity in childhood obesity. Int J Obes Relat Metab Disord. 1994;18:795–800.PubMedGoogle Scholar

  • [18]

    Huang TT, Johnson MS, Figueroa-Colon R, Dwyer JH, Goran MI. Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes Res. 2001;9:283–9.PubMedCrossrefGoogle Scholar

  • [19]

    Siervogel RM, Roche AF, Himes JH, Chumlea WC, McCammon R. Subcutaneous fat distribution in males and females from 1 to 39 years of age. Am J Clin Nutr. 1982;36:162–71.CrossrefPubMedGoogle Scholar

  • [20]

    Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21:415–30.CrossrefPubMedGoogle Scholar

  • [21]

    Maynard LM, Wisemandle W, Roche AF, Chumlea WC, Guo SS, Siervogel RM. Childhood body composition in relation to body mass index. Pediatrics. 2001;107:344–50.PubMedCrossrefGoogle Scholar

  • [22]

    Roemmich JN, Rogol AD. Hormonal changes during puberty and their relationship to fat distribution. Am J Hum Biol. 1999;11:209–24.CrossrefPubMedGoogle Scholar

  • [23]

    Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues the biology of pear shape. Biol Sex Differ. 2012;3:13–8.PubMedCrossrefGoogle Scholar

  • [24]

    Frayn KN. Visceral fat and insulin resistance–causative or correlative? Br J Nutr. 2000;83:S71–7.Google Scholar

  • [25]

    Miles JM, Jensen MD. Counterpoint: visceral adiposity is not causally related to insulin resistance. Diabetes Care. 2005;28:2326–8.CrossrefPubMedGoogle Scholar

  • [26]

    Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia. 2002;45:1201–10.CrossrefPubMedGoogle Scholar

  • [27]

    Pouliot MC, Despres JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, et al. Regional variation in adipose tissue lipoprotein lipase activity: association with plasma high density lipoprotein levels. Eur J Clin Invest. 1991;21:398–405.PubMedCrossrefGoogle Scholar

  • [28]

    Lemieux I. Energy partitioning in gluteal-femoral fat: does the metabolic fate of triglycerides affect coronary heart disease risk? Arterioscler Thromb Vasc Biol. 2004;24:795–7.PubMedCrossrefGoogle Scholar

  • [29]

    Hernandez TL, Kittelson JM, Law CK, Ketch LL, Stob NR, Lindstrom RC, et al. Fat redistribution following suction lipectomy: defense of body fat and patterns of restoration. Obesity (Silver Spring). 2011;19:1388–95.PubMedCrossrefGoogle Scholar

  • [30]

    Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7:410–20.PubMedCrossrefGoogle Scholar

  • [31]

    Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6:195–213.CrossrefPubMedGoogle Scholar

  • [32]

    Foster MT, Shi H, Softic S, Kohli R, Seeley RJ, Woods SC. Transplantation of non­visceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia. 2011;54:2890–9.CrossrefPubMedGoogle Scholar

  • [33]

    Konrad D, Rudich A, Schoenle EJ. Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia. 2007;50:833–9.CrossrefPubMedGoogle Scholar

  • [34]

    Karastergiou K, Fried SK, Xie H, Lee MJ, Divoux A, Rosencrantz MA, et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab. 2013;98:362–71.PubMedCrossrefGoogle Scholar

  • [35]

    Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation. 1997;96:3248–50.CrossrefPubMedGoogle Scholar

  • [36]

    Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2002;87:2784–91.CrossrefPubMedGoogle Scholar

  • [37]

    Herman MA, Peroni OD, Villoria J, Schön MR, Abumrad NA, Blüher M, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484:333–8.CrossrefPubMedGoogle Scholar

  • [38]

    Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008;118:2992–3002.CrossrefPubMedGoogle Scholar

  • [39]

    Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409:729–33.CrossrefPubMedGoogle Scholar

  • [40]

    Shepherd PR, Kahn BB. Glucose transporters and insulin action – implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341:248–57.PubMedCrossrefGoogle Scholar

  • [41]

    Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM, Ciaraldi TP. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest. 1991;87:1072–81.PubMedCrossrefGoogle Scholar

  • [42]

    Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55:2159–70.CrossrefPubMedGoogle Scholar

  • [43]

    Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 2011;108:16381–5.CrossrefGoogle Scholar

  • [44]

    Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–89.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-01-09

Accepted: 2018-02-22

Published Online: 2018-03-29


Funding Source: National Institutes of Health

Award identifier / Grant number: AG045712

Award identifier / Grant number: DK-085638

Award identifier / Grant number: DK-090556

Award identifier / Grant number: DK-49230

Award identifier / Grant number: K24-HD-01464

Award identifier / Grant number: R01-EB006494

Award identifier / Grant number: R01-HD-28016

Award identifier / Grant number: R01-HD-40787

Funding Source: National Center for Research Resources

Award identifier / Grant number: UL1-RR-0249139

Funding Source: American Diabetes Association

Award identifier / Grant number: 7-08-DCS-01

Funding Source: Diabetes Research Center

Award identifier / Grant number: P30-DK-045735

This study was supported by the National Institutes of Health (NIH) National Institute of Child Health and Human Development grants R01-HD-40787, R01-HD-28016 and K24-HD-01464 to S.C.; Clinical and Translational Science Award grant UL1-RR-0249139 from the National Center for Research Resources, a component of the NIH; grant R01-EB006494 (Bioimage Suite); and Distinguished Clinical Scientist Award from the American Diabetes Association 7-08-DCS-01 (S.C.), as well as grants DK-49230 and DK-085638 (G.I.S.), grants DK-090556 and AG045712 (V.D.D.), the Diabetes Research Center grant P30-DK-045735.


Author Statement

Conflict of interest: No potential conflicts of interest relevant to this article were reported.

Informed consent: Informed consent is not applicable.

Ethical approval: The conducted research is not related to either human or animals use.


Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 33, Issue 2, 20180005, ISSN (Online) 1868-1891, DOI: https://doi.org/10.1515/hmbci-2018-0005.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in