Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board Member: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

4 Issues per year


CiteScore 2016: 2.15

SCImago Journal Rank (SJR) 2015: 0.432
Source Normalized Impact per Paper (SNIP) 2015: 0.334

Online
ISSN
1868-1891
See all formats and pricing
More options …
Volume 21, Issue 3 (Mar 2015)

Issues

The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers

Sajad Ahmadizad
  • Faculty of Sport Sciences, Department of Sport and Exercise Physiology, University of Shahid Beheshti, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alireza Salimi Avansar
  • Faculty of Sport Sciences, Department of Sport and Exercise Physiology, University of Shahid Beheshti, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Khosrow Ebrahim
  • Faculty of Sport Sciences, Department of Sport and Exercise Physiology, University of Shahid Beheshti, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohsen Avandi
  • Faculty of Sport Sciences, Department of Sport and Exercise Physiology, University of Shahid Beheshti, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mansour Ghasemikaram
  • Corresponding author
  • Faculty of Sport Sciences, Department of Sport and Exercise Physiology, University of Shahid Beheshti, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-12 | DOI: https://doi.org/10.1515/hmbci-2014-0038

Abstract

Objectives: Exercise training is an effective method of weight management, and knowing about its influence on the hormones involved in the regulation of food intake and inflammation could be useful for body weight management. Therefore, the purpose of this study was to compare the effects of 6 weeks of high-intensity interval training (HIIT) and moderate-intensity continuous exercise training (MCT) on nesfatin-1, interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α).

Design and methods: Thirty sedentary overweight men (Mean±SD; age, 25±1 years) were divided into three (n=10) body mass index-matched groups. The participants in the training groups performed either HIIT or MCT protocols 3 days per week for 6 weeks followed by a week of detraining.

Results: Plasma IL-6 and TNF-α did not significantly change after training, but nesfatin increased significantly only with HIIT compared with the control group (p<0.05). In addition, fasting glucose, insulin, and homeostasis model estimated insulin resistance (HOMA-IR), decreased significantly following both HIIT and MCT training (p<0.05). After a detraining period, the plasma nesfatin-1 did not return to pre-training levels in the HIIT group.

Conclusions: Both the HIIT and MCT groups had similar effects on inflammatory markers and insulin resistance in men who are overweight, but the HIIT seems to have better anorectic effects (as indicated by nesfatin) compared with MCT.

Keywords: anorectic; inflammation; insulin resistance; training type

References

  • 1.

    Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006;443:709–12.Google Scholar

  • 2.

    Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, Kern W, Hillhouse EW, Lehnert H, Tan BK, Randeva HS. Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 2010;151:3169–80.Web of ScienceGoogle Scholar

  • 3.

    Stengel A, Goebel M, Wang L, Tache Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric x/a-like cells: role as regulators of food intake and body weight. Peptides 2010;31:357–69.PubMedCrossrefGoogle Scholar

  • 4.

    Nakata M, Manaka K, Yamamoto S, Mori M, Yada T. Nesfatin-1 enhances glucose-induced insulin secretion by promoting ca(2+) influx through l-type channels in mouse islet beta-cells. Endocr J 2011;58:305–13.Web of ScienceCrossrefPubMedGoogle Scholar

  • 5.

    Foo KS, Brauner H, Ostenson CG, Broberger C. Nucleobindin-2/nesfatin in the endocrine pancreas: distribution and relationship to glycaemic state. J Endocrinol 2010;204:255–63.Web of ScienceGoogle Scholar

  • 6.

    Aydin S. Multi-functional peptide hormone nucb2/nesfatin-1. Endocrine 2013;44:312–25.CrossrefWeb of ScienceGoogle Scholar

  • 7.

    Shimizu H, Oh IS, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M. Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 2009;150:662–71.Web of ScienceGoogle Scholar

  • 8.

    Wernecke K, Lamprecht I, Johren O, Lehnert H, Schulz C. Nesfatin-1 increases energy expenditure and reduces food intake in rats. Obesity (Silver Spring) 2014;22:1662–8.CrossrefWeb of ScienceGoogle Scholar

  • 9.

    Tsuchiya T, Shimizu H, Yamada M, Osaki A, Oh IS, Ariyama Y, Takahashi H, Okada S, Hashimoto K, Satoh T, Kojima M, Mori M. Fasting concentrations of nesfatin-1 are negatively correlated with body mass index in non-obese males. Clin Endocrinol (Oxf) 2010;73:484–90.Web of ScienceGoogle Scholar

  • 10.

    Li QC, Wang HY, Chen X, Guan HZ, Jiang ZY. Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrient-related fluctuation of nesfatin-1 level in normal humans. Regul Pept 2010;159:72–7.Web of ScienceGoogle Scholar

  • 11.

    Gonzalez R, Perry RL, Gao X, Gaidhu MP, Tsushima RG, Ceddia RB, Unniappan S. Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats. Endocrinology 2011;152:3628–37.Google Scholar

  • 12.

    Su Y, Zhang J, Tang Y, Bi F, Liu JN. The novel function of nesfatin-1: anti-hyperglycemia. Biochem Biophys Res Commun 2010;391:1039–42.Web of ScienceGoogle Scholar

  • 13.

    Zhang Z, Li L, Yang M, Liu H, Boden G, Yang G. Increased plasma levels of nesfatin-1 in patients with newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2012;120:91–5.PubMedWeb of ScienceGoogle Scholar

  • 14.

    Yang M, Zhang Z, Wang C, Li K, Li S, Boden G, Li L, Yang G. Nesfatin-1 action in the brain increases insulin sensitivity through akt/ampk/torc2 pathway in diet-induced insulin resistance. Diabetes 2012;61:1959–68.Google Scholar

  • 15.

    Shimizu H, Mori M. Nesfatin-1: its role in the diagnosis and treatment of obesity and some psychiatric disorders. Methods Mol Biol 2013;963:327–38.Google Scholar

  • 16.

    Scotece M, Conde J, Abella V, Lopez V, Lago F, Pino J, Gómez-Reino JJ, Gualillo O. Nucb2/nesfatin-1: a new adipokine expressed in human and murine chondrocytes with pro-inflammatory properties, an in vitro study. J Orthop Res 2014;32:653–60.Web of ScienceCrossrefGoogle Scholar

  • 17.

    Ghanbari-Niaki A, Kraemer RR, Soltani R. Plasma nesfatin-1 and glucoregulatory hormone responses to two different anaerobic exercise sessions. Eur J Appl Physiol 2010;110:863–8.Google Scholar

  • 18.

    Chaolu H, Asakawa A, Ushikai M, Li YX, Cheng KC, Li JB, Zoshiki T, Terashi M, Tanaka C, Atsuchi K, Sakoguchi T, Tsai M, Amitani H, Horiuchi M, Takeuchi T, Inui A. Effect of exercise and high-fat diet on plasma adiponectin and nesfatin levels in mice. Exp Ther Med 2011;2:369–73.Web of SciencePubMedGoogle Scholar

  • 19.

    Haghshenas R, Jafari M, Ravasi A, Kordi M, Gilani N, Shariatzadeh M, Hedayati M, Rahimi M. The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma. Iran J Basic Med Sci 2014;17:237–43.Google Scholar

  • 20.

    Earnest CP. Exercise interval training: an improved stimulus for improving the physiology of pre-diabetes. Med Hypotheses 2008;71:752–61.Web of ScienceGoogle Scholar

  • 21.

    Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slørdahl SA, Kemi OJ, Najjar SM, Wisløff U. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008;118:346–54.Web of SciencePubMedCrossrefGoogle Scholar

  • 22.

    Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010;59:1421–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 23.

    Barker AR, Day J, Smith A, Bond B, Williams CA. The influence of 2 weeks of low-volume high-intensity interval training on health outcomes in adolescent boys. J Sports Sci 2014;32:757–65.CrossrefPubMedGoogle Scholar

  • 24.

    Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes 2011;2011:868305.PubMedGoogle Scholar

  • 25.

    Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American college of sports medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009;41:459–71.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 26.

    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007;115:3086–94.Web of ScienceGoogle Scholar

  • 27.

    Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J. Aerobic high-intensity intervals improve vo2max more than moderate training. Med Sci Sports Exerc 2007;39:665–71.Web of ScienceCrossrefGoogle Scholar

  • 28.

    Zwetsloot KA, John CS, Lawrence MM, Battista RA, Shanely RA. High-intensity interval training induces a modest systemic inflammatory response in active, young men. J Inflamm Res 2014;7:9–17.PubMedCrossrefGoogle Scholar

  • 29.

    Hazell TJ, Olver TD, Hamilton CD, Lemon PW. Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. Int J Sport Nutr Exerc Metab 2012;22:276–83.Google Scholar

  • 30.

    Huang H, Iida KT, Sone H, Yokoo T, Yamada N, Ajisaka R. The effect of exercise training on adiponectin receptor expression in kkay obese/diabetic mice. J Endocrinol 2006;189:643–53.Google Scholar

  • 31.

    Moghadasi M, Mohebbi H, Rahmani-Nia F, Hassan-Nia S, Noroozi H, Pirooznia N. High-intensity endurance training improves adiponectin mrna and plasma concentrations. Eur J Appl Physiol 2012;112:1207–14.Web of ScienceCrossrefPubMedGoogle Scholar

  • 32.

    Cha SH, Lane MD. Central lactate metabolism suppresses food intake via the hypothalamic amp kinase/malonyl-coa signaling pathway. Biochem Biophys Res Commun 2009;386:212–6.Web of ScienceGoogle Scholar

  • 33.

    Nikseresht M, Sadeghifard N, Agha-Alinejad H, Ebrahim K. Inflammatory markers and adipocytokine responses to exercise training and detraining in men who are obese. J Strength Cond Res 2014;28:3399–410.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 34.

    Croft L, Bartlett JD, MacLaren DP, Reilly T, Evans L, Mattey DL, Nixon NB, Drust B, Morton JP. High-intensity interval training attenuates the exercise-induced increase in plasma il-6 in response to acute exercise. Appl Physiol Nutr Metab 2009;34:1098–107.PubMedWeb of ScienceGoogle Scholar

  • 35.

    Reihmane D, Dela F. Interleukin-6: possible biological roles during exercise. Eur J Sport Sci 2014;14:242–50.Web of ScienceCrossrefPubMedGoogle Scholar

  • 36.

    Tonoli C, Heyman E, Roelands B, Buyse L, Cheung SS, Berthoin S, Meeusen R. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports Med 2012;42:1059–80.PubMedCrossrefGoogle Scholar

  • 37.

    Ahmadizad S, Ghorbani S, Ghasemikaram M, Bahmanzadeh M. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clinical biochemistry 2014;47:417–22.Web of ScienceCrossrefPubMedGoogle Scholar

  • 38.

    Ogiso K, Asakawa A, Amitani H, Nakahara T, Ushikai M, Haruta I, Koyama K, Amitani M, Harada T, Yasuhara D, Inui A. Plasma nesfatin-1 concentrations in restricting-type anorexia nervosa. Peptides 2011;32:150–3.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 39.

    Aslan M, Celik O, Celik N, Turkcuoglu I, Yilmaz E, Karaer A, Simsek Y, Celik E, Aydin S. Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine 2012;41: 424–9.CrossrefPubMedGoogle Scholar

  • 40.

    Bajpeyi S, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Hickner RC, Kraus WE, Houmard JA. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J Appl Physiol (1985) 2009;106:1079–85.Web of ScienceGoogle Scholar

About the article

Corresponding author: Mansour Ghasemikaram, Faculty of Sport Sciences, Department of Sport and Exercise Physiology, University of Shahid Beheshti, Velenjak Square, Tehran, Iran, Postcode: 1983963113, Phone: +98-21-29902931, Fax: +98-21-22431953, E-mail:


Received: 2014-11-06

Accepted: 2014-12-08

Published Online: 2015-01-12

Published in Print: 2015-03-01


Citation Information: Hormone Molecular Biology and Clinical Investigation, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2014-0038.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Philip Prinz and Andreas Stengel
Journal of Neurogastroenterology and Motility, 2017, Volume 23, Number 2, Page 180

Comments (0)

Please log in or register to comment.
Log in