Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.837

See all formats and pricing
More options …
Volume 25, Issue 1


Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve

Onder Celik / Banu Kumbak Aygun
  • Department of Obstetrics and Gyneclogy, Istanbul Memorial Hospital, IVF unit, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nilufer Celik / Suleyman Aydin / Esra Tustas Haberal / Levent Sahin / Yasemin Yavuz / Sudenaz Celik
Published Online: 2015-12-17 | DOI: https://doi.org/10.1515/hmbci-2015-0049


Emigration is defined as a synchronized movement of germ cells between the yolk sack and genital ridges. The miraculous migration of germ cells resembles the remigration of salmon traveling from one habitat to other. This migration of germ cells is indispensible for the development of new generations. It is not, however, clear why germ cells differentiate during migration but not at the place of origin. In order to escape harmful somatic signals which might disturb the proper establishment of germ cells forced germ cell migration may be necessary. Another reason may be to benefit from the opportunities of new habitats. Therefore, emigration may have powerful effects on the population dynamics of the immigrant germ cells. While some of these cells do reach their target, some others die or reach to wrong targets. Only germ cell precursors with genetically, and structurally powerful can reach their target. Likewise, epigenetic reprogramming in both migratory and post-migratory germ cells is essential for the establishment of totipotency. During this journey some germ cells may sacrifice themselves for the goodness of the others. The number and quality of germ cells reaching the genital ridge may vary depending on the problems encountered during migration. If the aim in germ cell specification is to provide an optimal ovarian reserve for the continuity of the generation, then this cascade of events cannot be only accomplished at the same level for every one but also are manifested by several outcomes. This is significant evidence supporting the possibility of unique individual ovarian reserve.

Keywords: emigration; epigenesis; germ cell; ovarian reserve


  • 1.

    Tilly JL, Niikura Y, Rueda BR. The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod 2009;80:2–12.CrossrefGoogle Scholar

  • 2.

    Tilly JL, Johnson J. Recent arguments against germ cell renewal in the adult human ovary – Is an absence of marker gene expression really acceptable evidence of an absence of oogenesis? Cell Cycle 2007;6:879–83.CrossrefGoogle Scholar

  • 3.

    Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006;441:1109–14.Google Scholar

  • 4.

    Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res 1951;6:63–108.Google Scholar

  • 5.

    Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 2008;23:699–708.CrossrefGoogle Scholar

  • 6.

    Kellokumpu-Lehtinen PL, Soderstrom KO. Occurrence of nuage in fetal human germ cells. Cell Tissue Res 1978;194:171–7.CrossrefGoogle Scholar

  • 7.

    Mazzoni TS, Grier HJ, Quagio-Grassiotto I. Germline cysts and the formation of the germinal epithelium during the female gonadal morphogenesis in Cyprinus carpio (Teleostei: Ostariophysi: Cypriniformes). Anat Rec (Hoboken) 2010;293:1581–606.Google Scholar

  • 8.

    Smith LC, Alcivar AA. Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil Suppl 1993;48:31–43.Google Scholar

  • 9.

    De Pol A, Vaccina F, Forabosco A, Cavazzuti E, Marzona L. Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod 1997;12:2235–41.CrossrefGoogle Scholar

  • 10.

    Beaumont HM. Radiosensitivity of oogonia and oocytes in the foetal rat. Int J Radiat Biol 1961;3:59–72.Google Scholar

  • 11.

    Kurilo LF. Oogenesis in antenatal development in man. Human Genetics 1981;57:86–92.CrossrefGoogle Scholar

  • 12.

    Morita Y, Tilly JL. Oocyte apoptosis: like sand through an hourglass. Dev Biol 1999;213:1–17.Google Scholar

  • 13.

    Matova N, Cooley L. Comparative aspects of animal oogenesis. Dev Biol 2001;231:291–320.Google Scholar

  • 14.

    De Felici M. Origin, migration, and proliferation of human primordial germ cells. Oogenesis: Springer, 2013:19–37.Google Scholar

  • 15.

    Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis 2006;44:622–32.CrossrefGoogle Scholar

  • 16.

    Pepling ME, Spradling AC. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 2001;234:339–51.Google Scholar

  • 17.

    Theurkauf WE, Smiley S, Wong ML, Alberts BM. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 1992;115:923–36.Google Scholar

  • 18.

    Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992;69:173–84.CrossrefGoogle Scholar

  • 19.

    Spradling AC. Germline cysts: communes that work. Cell 1993;72:649–51.CrossrefGoogle Scholar

  • 20.

    Mahajanmiklos S, Cooley L. Intercellular cytoplasm transport during drosophila oogenesis. Dev Biol 1994;165:336–51.Google Scholar

  • 21.

    Guild GM, Connelly PS, Shaw MK, Tilney LG. Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J Cell Biol 1997;138:783–97.Google Scholar

  • 22.

    Gutzeit HO, Koppa R. Time-lapse film analysis of cytoplasmic streaming during late oogenesis of drosophila. J Embryol Exp Morph 1982;67:101–11.Google Scholar

  • 23.

    Buszczak M, Cooley L. Eggs to die for: cell death during Drosophila oogenesis. Cell Death Differ 2000;7:1071–4.CrossrefGoogle Scholar

  • 24.

    Ukeshima A. Germ cell death in the degenerating right ovary of the chick embryo. Zoolog Sci 1996;13:559–63.CrossrefGoogle Scholar

  • 25.

    Salinas LS, Maldonado E, Navarro RE. Stress-induced germ cell apoptosis by a p53 independent pathway in Caenorhabditis elegans. Cell Death Differ 2006;13:2129–39.CrossrefGoogle Scholar

  • 26.

    Tilly JL. Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2001;2:838–48.CrossrefGoogle Scholar

  • 27.

    Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 2012;58:44–50.CrossrefGoogle Scholar

  • 28.

    Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 1999;126: 1011–22.Google Scholar

  • 29.

    Andux S, Ellis RE. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS genetics 2008;4:e1000295.CrossrefGoogle Scholar

  • 30.

    Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO. A conserved checkpoint pathway mediates DNA damage – induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 2000;5:435–43.CrossrefGoogle Scholar

  • 31.

    Angelo G, Van Gilst MR. Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 2009;326:954–8.Google Scholar

  • 32.

    Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 2001;98:2735–9.CrossrefGoogle Scholar

  • 33.

    Choi SS. High glucose diets shorten lifespan of Caenorhabditis elegans via ectopic apoptosis induction. Nutr Res Pract 2011;5:214–8.CrossrefGoogle Scholar

  • 34.

    Chaube SK, Shrivastav TG, Prasad S, Tiwari M, Tripathi A, Pandey AN, Premkumar KV. Clomiphene citrate induces ROS-mediated apoptosis in mammalian oocytes. Open J Apoptosis 2014;3:52–8.CrossrefGoogle Scholar

  • 35.

    Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet 2010;27:29–39.CrossrefGoogle Scholar

  • 36.

    Tripathi A, Shrivastav TG, Chaube SK. An increase of granulosa cell apoptosis mediates aqueous neem (Azadirachta indica) leaf extract-induced oocyte apoptosis in rat. Int J Appl Basic Med Res 2013;3:27–36.CrossrefGoogle Scholar

  • 37.

    Bailly A, Gartner A. Germ cell apoptosis and DNA damage responses. Adv Exp Med Biol 2013;757:249–76.Google Scholar

  • 38.

    Vaccari S, Weeks JL, Hsieh M, Menniti FS, Conti M. Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod 2009;81: 595–604.CrossrefGoogle Scholar

  • 39.

    Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 2005;130:791–9.CrossrefGoogle Scholar

  • 40.

    Chaube SK, Prasad PV, Thakur SC, Shrivastav TG. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis 2005;10:863–74.CrossrefGoogle Scholar

  • 41.

    Pepling ME, Spradling AC. Female mouse germ cells form synchronously dividing cysts. Development 1998;125:3323–8.Google Scholar

  • 42.

    de Cuevas M, Lilly MA, Spradling AC. Germline cyst formation in Drosophila. Annu Rev Genet 1997;31:405–28.CrossrefGoogle Scholar

  • 43.

    Monk M, McLaren A. X-chromosome activity in foetal germ cells of the mouse. J Embryol Exp Morphol 1981;63:75–84.Google Scholar

  • 44.

    Zamboni L, Gondos B. Intercellular bridges and synchronization of germ cell differentiation during oogenesis in the rabbit. J Cell Biol 1968;36:276–82.CrossrefGoogle Scholar

  • 45.

    McKearin D, Ohlstein B. A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 1995;121:2937–47.Google Scholar

  • 46.

    Gondos B. Germ cell degeneration and intercellular bridges in the human fetal ovary. Z Zellforsch Mikrosk Anat 1973;138:23–30.Google Scholar

  • 47.

    Gondos B, Moonroe SA. Cystic granulosa cell tumor with massive hemoperitoneum: light and electron microscopic study. Obstet Gynecol 1971;38:683–9.Google Scholar

  • 48.

    Storto PD, King RC. The role of polyfusomes in generating branched chains of cystocytes during Drosophila oogenesis. Dev Genet 1989;10:70–86.CrossrefGoogle Scholar

  • 49.

    Mahowald AP, Strasshe JM. Intercellular migration of centrioles in germarium of Drosophila melanogaster – an electron microscopic study. J Cell Biol 1970;45:306–20.CrossrefGoogle Scholar

  • 50.

    Gondos B. Comparative studies of normal and neoplastic ovarian germ cells: 2. Ultrastructure and pathogenesis of dysgerminoma. Int J Gynecol Pathol 1987;6:124–31.CrossrefGoogle Scholar

  • 51.

    Braun RE, Peschon JJ, Behringer RR, Brinster RL, Palmiter RD. Protamine 3′-untranslated sequences regulate temporal translational control and subcellular localization of growth hormone in spermatids of transgenic mice. Genes Dev 1989;3:793–802.Google Scholar

  • 52.

    Gottanka J, Büning J. Oocytes develop from interconnected cystocytes in the panoistic ovary of Nemoura sp.(Pictet)(Plecoptera: Nemouridae). Int J Insect Morphol Embryol 1990;19:219–25.CrossrefGoogle Scholar

  • 53.

    Büning J. The insect ovary: ultrastructure, previtellogenic growth and evolution: Springer Science and Business Media. New York: Chapman and Hall, 1994.Google Scholar

  • 54.

    Jenuth JP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996;14:146–51.CrossrefGoogle Scholar

  • 55.

    Iguchi T, Takasugi N. Polyovular follicles in the ovary of immature mice exposed prenatally to diethylstilbestrol. Anat Embryol (Berl) 1986;175:53–5.Google Scholar

  • 56.

    Reynaud K, Halter S, Tahir Z, Thoumire S, Chebrout M, Chastant-Maillard S. Polyovular follicles. Gynecol Obstet Fertil 2010;38:395–7.CrossrefGoogle Scholar

  • 57.

    Telfer E, Gosden RG. A quantitative cytological study of polyovular follicles in mammalian ovaries with particular reference to the domestic bitch (Canis familiaris). J Reprod Fertil 1987;81:137–47.CrossrefGoogle Scholar

  • 58.

    McLaren A. Primordial germ cells in the mouse. Dev Biol 2003;262:1–15.Google Scholar

  • 59.

    Ewen-Campen B, Schwager EE, Extavour CG. The molecular machinery of germ line specification. Mol Reprod Dev 2010;77:3–18.CrossrefGoogle Scholar

  • 60.

    Huettner AF. The origin of the germ cells in Drosophila melanogaster. J Morphol 1923;37:385–423.CrossrefGoogle Scholar

  • 61.

    Hird SN, Paulsen JE, Strome S. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 1996;122:1303–12.Google Scholar

  • 62.

    Houston DW, King ML. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 2000;127:447–56.Google Scholar

  • 63.

    Seydoux G, Braun RE. Pathway to totipotency: lessons from germ cells. Cell 2006;127:891–904.CrossrefGoogle Scholar

  • 64.

    Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983;100:64–119.CrossrefGoogle Scholar

  • 65.

    Johnson AD, Crother B, White ME, Patient R, Bachvarova RF, Drum M, Masi T. Regulative germ cell specification in axolotl embryos: a primitive trait conserved in the mammalian lineage. Philos Trans R Soc Lond B Biol Sci 2003;358:1371–9.Google Scholar

  • 66.

    Johnson AD, Drum M, Bachvarova RF, Masi T, White ME, Crother BI. Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution. Evol Dev 2003;5:414–31.CrossrefGoogle Scholar

  • 67.

    Extavour CG, Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 2003;130:5869–84.CrossrefGoogle Scholar

  • 68.

    Juliano CE, Swartz SZ, Wessel GM. A conserved germline multipotency program. Development 2010;137:4113–26.Google Scholar

  • 69.

    Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. RNA granules in germ cells. Cold Spring Harb Perspect Biol 2011;3:a002774.Google Scholar

  • 70.

    Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK. Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 2011;353:147–59.Google Scholar

  • 71.

    Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999;13:424–36.Google Scholar

  • 72.

    Ohinata Y, Seki Y, Payer B, O’Carroll D, Surani MA, Saitou M. Germline recruitment in mice: a genetic program for epigenetic reprogramming. Ernst Schering Res Found Workshop 2006;60:143–74.CrossrefGoogle Scholar

  • 73.

    Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008;9:129–40.CrossrefGoogle Scholar

  • 74.

    Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 2005;278:440–58.Google Scholar

  • 75.

    Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 2007;134:2627–38.CrossrefGoogle Scholar

  • 76.

    Tsang TE, Khoo PL, Jamieson RV, Zhou SX, Ang SL, Behringer R, Tam PP. The allocation and differentiation of mouse primordial germ cells. Int J Dev Biol 2001;45:549–55.Google Scholar

  • 77.

    Tam PP, Zhou SX. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996;178:124–32.Google Scholar

  • 78.

    Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 2005;436:207–13.Google Scholar

  • 79.

    Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, Yamanaka K, Ohinata Y, Saitou M. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 2008;40:1016–22.CrossrefGoogle Scholar

  • 80.

    Saitou M, Payer B, Lange UC, Erhardt S, Barton SC, Surani MA. Specification of germ cell fate in mice. Philos Trans R Soc Lond B Biol Sci 2003;358:1363–70.Google Scholar

  • 81.

    Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009;137:571–84.Google Scholar

  • 82.

    Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 1996;382:713–6.Google Scholar

  • 83.

    Okamura D, Kimura T, Nakano T, Matsui Y. Cadherin-mediated cell interaction regulates germ cell determination in mice. Development 2003;130:6423–30.CrossrefGoogle Scholar

  • 84.

    Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev 2008;22:1617–35.Google Scholar

  • 85.

    Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002;418: 293–300.Google Scholar

  • 86.

    Yabuta Y, Kurimoto K, Ohinata Y, Seki Y, Saitou M. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod 2006;75:705–16.CrossrefGoogle Scholar

  • 87.

    Pesce M, Gross MK, Schöler HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 1998;20:722–32.CrossrefGoogle Scholar

  • 88.

    Tam PP, Zhou SX, Tan SS. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene. Development 1994;120: 2925–32.Google Scholar

  • 89.

    Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development 1990;110: 521–8.Google Scholar

  • 90.

    Tam PP, Snow MH. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 1981;64:133–47.Google Scholar

  • 91.

    Anderson R, Copeland TK, Scholer H, Heasman J, Wylie C. The onset of germ cell migration in the mouse embryo. Mech Dev 2000;91:61–8.CrossrefGoogle Scholar

  • 92.

    Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 2000;14:1053–63.CrossrefGoogle Scholar

  • 93.

    Molyneaux K, Stallock J, Schaible K, Wylie C. Time-lapse analysis of primordial germ cells in the mouse. J Exp Zool 2001;134: 207–37.Google Scholar

  • 94.

    Pepling, M. Oocyte development before and during folliculogenesis, in oocyte physiology and development in domestic animals. In: Krisher RL, editor. Oxford, UK: Wiley-Blackwell, 2013.Google Scholar

  • 95.

    Juengel JL, Sawyer HR, Smith PR, Quirke LD, Heath DA, Lun S, Wakefield SJ, McNatty KP. Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries. Mol Cell Endocrinol 2002;191:1–10.Google Scholar

  • 96.

    Witschi E. Early history of the human germ cells. Anat Rec 1946;94:506.Google Scholar

  • 97.

    Witschi E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib Embryol 1948;32:67–80.Google Scholar

  • 98.

    Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, Esguerra CV, Leung T, Raz E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 2002;111:647–59.Google Scholar

  • 99.

    Farini D, La Sala G, Tedesco M, De Felici M. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol 2007;306: 572–83.Google Scholar

  • 100.

    Godin I, Wylie C. TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 1991;113:1451–7.Google Scholar

  • 101.

    Rucker EB 3rd, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, Hennighausen L. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 2000;14:1038–52.CrossrefGoogle Scholar

  • 102.

    Richards AJ, Enders GC, Resnick JL. Activin and TGFbeta limit murine primordial germ cell proliferation. Dev Biol 1999;207:470–5.Google Scholar

  • 103.

    Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, Lomelí H, Nagy A, McLaughlin KJ, Schöler HR, Tomilin A. Oct4 is required for primordial germ cell survival. EMBO Rep 2004;5:1078–83.CrossrefGoogle Scholar

  • 104.

    Suzuki H, Tsuda M, Kiso M, Saga Y. Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and-independent apoptotic pathways. Dev Biol 2008;318: 133–42.Google Scholar

  • 105.

    Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP, Parker KL. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol Endocrinol 1993;7:852–60.Google Scholar

  • 106.

    Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakitani M. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 2008;17:1278–91.CrossrefGoogle Scholar

  • 107.

    Merkwitz C, Lochhead P, Tsikolia N, Koch D, Sygnecka K, Sakurai M, Spanel-Borowski K, Ricken AM. Expression of KIT in the ovary, and the role of somatic precursor cells. Prog Histochem Cytochem 2011;46:131–84.CrossrefGoogle Scholar

  • 108.

    Mollgard K, Lundberg JJ, Wiklund L, Lachenmayer L, Baumgarten HG. Morphologic consequences of serotonin neurotoxin administration: neuron-target cell interaction in the rat subcommissural organ. Ann N Y Acad Sci 1978;305: 262–88.Google Scholar

  • 109.

    Anderson R, Fässler R, Georges-Labouesse E, Hynes RO, Bader BL, Kreidberg JA, Schaible K, Heasman J, Wylie C. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development 1999;126:1655–64.Google Scholar

  • 110.

    Poelmann R. The formation of the embryonic mesoderm in the early post-implantation mouse embryo. Anat Embryol (Berl) 1981;162:29–40.CrossrefGoogle Scholar

  • 111.

    Vermeij-Keers C, Poelmann R. The neural crest: a study on cell degeneration and the improbability of cell migration in mouse embryos. Neth J Zool 1979;30:74–81.CrossrefGoogle Scholar

  • 112.

    Gasser RF. Evidence that sclerotomal cells do not migrate medially during normal embryonic development of the rat. Am J Anat 1979;154:509–23.Google Scholar

  • 113.

    Freeman B. The active migration of germ cells in the embryos of mice and men is a myth. Reproduction 2003;125:635–43.CrossrefGoogle Scholar

  • 114.

    Gilbert SF. Germ Cell Migration. Developmental Biology, 6th ed. Sunderland (MA): Sinauer Associates, 2000.Google Scholar

  • 115.

    Fujimoto T, Miyayama Y, Fuyuta M. The origin, migration and fine morphology of human primordial germ cells. Anat Rec (Hoboken) 1977;188:315–30.Google Scholar

  • 116.

    Jeon KW, Kennedy JR. The primordial germ cells in early mouse embryos: light and electron microscopic studies. Dev Biol 1973;31:275–84.CrossrefGoogle Scholar

  • 117.

    Tam P, Snow M. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morph 1981;64:133–47.Google Scholar

  • 118.

    Donovan PJ, Stott D, Cairns LA, Heasman J, Wylie CC. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 1986;44:831–8.CrossrefGoogle Scholar

  • 119.

    Swift CH. Origin and early history of the primordial germ-cells in the chick. Am J Anat 1914;15:483–516.CrossrefGoogle Scholar

  • 120.

    Ginsburg M, Eyal-Giladi H. Primordial germ cells of the young chick blastoderm originate from the central zone of the area pellucida irrespective of the embryo-forming process. Development 1987;101:209–19.Google Scholar

  • 121.

    Ooi SK, O’Donnell AH, Bestor TH. Mammalian cytosine methylation at a glance. J Cell Sci 2009;122:2787–91.CrossrefGoogle Scholar

  • 122.

    Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004;14:188–95.CrossrefGoogle Scholar

  • 123.

    Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481–514.CrossrefGoogle Scholar

  • 124.

    Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004;431:96–9.Google Scholar

  • 125.

    Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001;294:2536–9.Google Scholar

  • 126.

    Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 2007;307:368–79.Google Scholar

  • 127.

    Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 2004;13:839–49.CrossrefGoogle Scholar

  • 128.

    Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature 2000;403:501–2.Google Scholar

  • 129.

    Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001;98:13734–8.CrossrefGoogle Scholar

  • 130.

    Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, Wolf E, Walter J. Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 2008;1:8.Google Scholar

  • 131.

    Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011;477:606–10.Google Scholar

  • 132.

    Kurimoto K, Yamaji M, Seki Y, Saitou M. Specification of the germ cell lineage in mice: a process orchestrated by the PR-domain proteins, Blimp1 and Prdm14. Cell Cycle 2008;7: 3514–8.CrossrefGoogle Scholar

  • 133.

    Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473:398–402.Google Scholar

  • 134.

    Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992;70:841–7.CrossrefGoogle Scholar

  • 135.

    Hajkova P, el-Maarri O, Engemann S, Oswald J, Olek A, Walter J. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol Biol 2002;200:143–54.Google Scholar

  • 136.

    Guibert S, Forne T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 2012;22:633–41.CrossrefGoogle Scholar

  • 137.

    Lane P, Staples KJ. Roeing against the wind and wadeing against the current: embryonic stem cell research and the abortion debate. J Androl 2003;24:312–6.CrossrefGoogle Scholar

  • 138.

    Chang AS, Moley KH, Wangler M, Feinberg AP, DeBaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril 2005;83:349–54.CrossrefGoogle Scholar

  • 139.

    Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L, Clayton-Smith J, Brueton LA, Bannister W, Maher ER. Assisted reproductive therapies and imprinting disorders – a preliminary British survey. Hum Reprod 2006;21:1009–11.CrossrefGoogle Scholar

  • 140.

    Filipponi D, Feil R. Perturbation of genomic imprinting in oligozoospermia. Epigenetics 2009;4:27–30.CrossrefGoogle Scholar

  • 141.

    Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod 2007;22:26–35.CrossrefGoogle Scholar

  • 142.

    Khoueiry R, Ibala-Rhomdane S, Méry L, Blachère T, Guérin JF, Lornage J, Lefèvre A. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet 2008;45:583–8.Google Scholar

  • 143.

    Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 2008;17: 1653–65.CrossrefGoogle Scholar

  • 144.

    Kerjean A, Couvert P, Heams T, Chalas C, Poirier K, Chelly J, Jouannet P, Paldi A, Poirot C. In vitro follicular growth affects oocyte imprinting establishment in mice. Eur J Hum Genet 2003;11:493–6.CrossrefGoogle Scholar

  • 145.

    Ecker DJ, Stein P, Xu Z, Williams CJ, Kopf GS, Bilker WB, Abel T, Schultz RM. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci USA 2004;101:1595–600.CrossrefGoogle Scholar

  • 146.

    Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 2007;77:87–111.CrossrefGoogle Scholar

  • 147.

    Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 2001;64:904–9.CrossrefGoogle Scholar

  • 148.

    Andersen PR, Tronick SR, Aaronson SA. Structural organization and biological activity of molecular clones of the integrated genome of a BALB/c mouse sarcoma virus. J Virol 1981;40:431–9.Google Scholar

  • 149.

    Burger G, Gray MW, Lang BF. Mitochondrial genomes: anything goes. Trends Genet 2003;19:709–16.CrossrefGoogle Scholar

  • 150.

    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457–65.Google Scholar

  • 151.

    Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod 2000;15(Suppl 2):11–7.CrossrefGoogle Scholar

  • 152.

    Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 1980;77:6715–9.CrossrefGoogle Scholar

  • 153.

    Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995;92:4542–6.CrossrefGoogle Scholar

  • 154.

    Bogenhagen DF. Does mtDNA nucleoid organization impact aging? Exp Gerontol 2010;45:473–7.CrossrefGoogle Scholar

  • 155.

    Michaels GS, Hauswirth WW, Laipis PJ. Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev Biol 1982;94:246–51.CrossrefGoogle Scholar

  • 156.

    Pikó L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987;123:364–74.CrossrefGoogle Scholar

  • 157.

    Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 1998;145:81–8.Google Scholar

  • 158.

    Birky CW Jr. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 1995;92:11331–8.CrossrefGoogle Scholar

  • 159.

    Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature 1999;402:371–2.Google Scholar

  • 160.

    DeLuca SZ, O’Farrell PH. Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 2012;22: 660–8.CrossrefGoogle Scholar

  • 161.

    Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011;334:1144–7.Google Scholar

  • 162.

    Leffler A, Ludwig M, Schmitt O, Busch LC. Germ cell migration and early development of the gonads in the trisomy 16 mouse – an animal model for Down’s syndrome. Ann Anat 1999;181:247–52.Google Scholar

  • 163.

    Makabe S, Motta PM. Migration of human germ cells and their relationship with the developing ovary: ultrastructural aspects. Prog Clin Biol Res 1989;296:41.Google Scholar

  • 164.

    Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 2000;15(Suppl 2):129–47.CrossrefGoogle Scholar

  • 165.

    Allen JF. Separate sexes and the mitochondrial theory of ageing. J Theor Biol 1996;180:135–40.CrossrefGoogle Scholar

  • 166.

    Blok RB, Gook DA, Thorburn DR, Dahl HH. Skewed segregation of the mtDNA nt 8993 (T–>G) mutation in human oocytes. Am J Hum Genet 1997;60:1495–501.CrossrefGoogle Scholar

  • 167.

    Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 2012;151: 333–43.Google Scholar

  • 168.

    Jansen RP. Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum Reprod 2000;15(Suppl 2):112–28.CrossrefGoogle Scholar

  • 169.

    Krakauer DC, Mira A. Mitochondria and germ-cell death. Nature 1999;400:125–6.Google Scholar

  • 170.

    Hauswirth WW, Laipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 1982;79:4686–90.CrossrefGoogle Scholar

  • 171.

    Meirelles FV, Smith LC. Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 1998;148:877–83.Google Scholar

  • 172.

    Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 2007;39:386–90.CrossrefGoogle Scholar

  • 173.

    Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 2008;40:1484–8.CrossrefGoogle Scholar

  • 174.

    Takagi N, Sasaki M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 1975;256:640–2.Google Scholar

  • 175.

    Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM, Avner P, Heard E. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 2005;438:369–73.Google Scholar

  • 176.

    Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961;190:372–3.Google Scholar

  • 177.

    Epstein CJ. Mammalian oocytes: X chromosome activity. Science 1969;163:1078–9.CrossrefGoogle Scholar

  • 178.

    Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S, Otte AP, Brockdorff N. Reactivation of the paternal X chromosome in early mouse embryos. Science 2004;303: 666–9.Google Scholar

  • 179.

    Sugimoto M, Abe K. X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet 2007;3:e116.CrossrefGoogle Scholar

  • 180.

    de Napoles M, Nesterova T, Brockdorff N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells. PloS one 2007;2:e860.CrossrefGoogle Scholar

  • 181.

    Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662–73.CrossrefGoogle Scholar

  • 182.

    Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002;117:15–23.CrossrefGoogle Scholar

  • 183.

    Lin H. The tao of stem cells in the germline. Annu Rev Genet 1997;31:455–91.CrossrefGoogle Scholar

  • 184.

    Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 2008;78:159–66.CrossrefGoogle Scholar

  • 185.

    van Winkoop A, Timmermans LP. Phenotypic changes in germ cells during gonadal development of the common carp (Cyprinus carpio). An immunohistochemical study with anti-carp spermatogonia monoclonal antibodies. Histochemistry 1992;98:289–98.CrossrefGoogle Scholar

  • 186.

    Byskov AG, Lintern-Moore S. Follicle formation in the immature mouse ovary: the role of the rete ovarii. J Anat 1973;116(Pt 2): 207–17.Google Scholar

  • 187.

    Sawyer HR, Smith P, Heath DA, Juengel JL, Wakefield SJ, McNatty KP. Formation of ovarian follicles during fetal development in sheep. Biol Reprod 2002;66:1134–50.CrossrefGoogle Scholar

  • 188.

    Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol 2005;37:1344–9.CrossrefGoogle Scholar

  • 189.

    Pepling ME, Wilhelm JE, O’Hara AL, Gephardt GW, Spradling AC. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA 2007;104: 187–92.CrossrefGoogle Scholar

  • 190.

    Liu CF, Liu C, Yao HH. Building pathways for ovary organogenesis in the mouse embryo. Curr Top Dev Biol 2010;90:263–90.CrossrefGoogle Scholar

  • 191.

    von Hofsten J, Olsson PE. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 2005;3:63.CrossrefGoogle Scholar

  • 192.

    Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 2006;38:1304–9.CrossrefGoogle Scholar

  • 193.

    Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, Pilia G, Schlessinger D. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 2005;14:2053–62.CrossrefGoogle Scholar

  • 194.

    Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 1998;391:761–7.Google Scholar

  • 195.

    Ohno S, Cattanach BM. Cytological study of an X-autosome translocation in Mus musculus. Cytogenetics 1962;1:129–40.CrossrefGoogle Scholar

  • 196.

    Morris T. The XO and Oy chromosome constitutions in the mouse. Genet Res 1968;12:125–37.CrossrefGoogle Scholar

  • 197.

    Marsh H, Kasuya T. Changes in the ovaries of the short-finned pilot Whale, Globicephalu mecrorhynchuso with age and reproductive activity. Rep Int Whal Commn (Special-issue) 1984;6:311–335.Google Scholar

  • 198.

    Ohsumi S. Comparison of maturity and accumulation rate of corpora albicantia between the left and right ovaries in Cetacea. Sci Rep Whales Res Inst 1964;18:123–48.Google Scholar

  • 199.

    Ukeshima A, Fujimoto T. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick. Anat Rec (Hoboken) 1991;230:378–86.Google Scholar

  • 200.

    McLaren A. Mammalian development: methods and success of nuclear transplantation in mammals. Nature 1984;309:671–2.Google Scholar

  • 201.

    Dingle H, Drake VA. What is migration? Bioscience 2007;57:113–21.CrossrefGoogle Scholar

About the article

Corresponding author: Onder Celik, M.D., Professor, Metin Oktay Mah, 52/ 96 Sokak No 3/39, Kat:7, Karabağlar, İzmir, Turkey, Phone: +905304203566, E-mail: ; and Obstetrics and Gynecology, Usak, Turkey

Received: 2015-10-12

Accepted: 2015-10-30

Published Online: 2015-12-17

Published in Print: 2016-01-01

Citation Information: Hormone Molecular Biology and Clinical Investigation, Volume 25, Issue 1, Pages 45–63, ISSN (Online) 1868-1891, ISSN (Print) 1868-1883, DOI: https://doi.org/10.1515/hmbci-2015-0049.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in