Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hormone Molecular Biology and Clinical Investigation

Editor-in-Chief: Chetrite, Gérard S.

Editorial Board: Alexis, Michael N. / Baniahmad, Aria / Beato, Miguel / Bouillon, Roger / Brodie, Angela / Carruba, Giuseppe / Chen, Shiuan / Cidlowski, John A. / Clarke, Robert / Coelingh Bennink, Herjan J.T. / Darbre, Philippa D. / Drouin, Jacques / Dufau, Maria L. / Edwards, Dean P. / Falany, Charles N. / Fernandez-Perez, Leandro / Ferroud, Clotilde / Feve, Bruno / Flores-Morales, Amilcar / Foster, Michelle T. / Garcia-Segura, Luis M. / Gastaldelli, Amalia / Gee, Julia M.W. / Genazzani, Andrea R. / Greene, Geoffrey L. / Groner, Bernd / Hampl, Richard / Hilakivi-Clarke, Leena / Hubalek, Michael / Iwase, Hirotaka / Jordan, V. Craig / Klocker, Helmut / Kloet, Ronald / Labrie, Fernand / Mendelson, Carole R. / Mück, Alfred O. / Nicola, Alejandro F. / O'Malley, Bert W. / Raynaud, Jean-Pierre / Ruan, Xiangyan / Russo, Jose / Saad, Farid / Sanchez, Edwin R. / Schally, Andrew V. / Schillaci, Roxana / Schindler, Adolf E. / Söderqvist, Gunnar / Speirs, Valerie / Stanczyk, Frank Z. / Starka, Luboslav / Sutter, Thomas R. / Tresguerres, Jesús A. / Wahli, Walter / Wildt, Ludwig / Yang, Kaiping / Yu, Qi

CiteScore 2018: 2.43

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.837

See all formats and pricing
More options …
Ahead of print


Obesity-induced immune dysfunction and immunosuppression: TEM observation of visceral and subcutaneous lymph node microarchitecture and immune cell interactions

Claudia M. Solt
  • Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jessica L. Hill
  • Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kim Vanderpool / Michelle T. Foster
  • Corresponding author
  • Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO 80523, USA, Phone: +(970) 491-6189; Fax: +(970) 491-3875
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-28 | DOI: https://doi.org/10.1515/hmbci-2018-0083



Inflammation, induced by excessive adiposity, links obesity to disease risk yet little attention has been devoted to the lymphoid tissues embedded within adipose tissue depots. Lymph nodes are the primary site for the development of protective immunity, hence any disease process that affects these tissues will also directly impact immunity. Here we examined how obesity alters secondary lymphatic tissue structure and encapsulated immune cells.

Materials and methods

Four-month-old C57BL/6 male mice were fed standard rodent chow or a Western high fat diet (HFD) for 6 months. Center regions of visceral and subcutaneous lymph nodes (SQLNS) were observed via transmission electron microscopy (TEM).


Compared with chow, HFD-induced obesity deleteriously modified the structural microarchitecture and immune cell morphology of visceral and SQLNs. In HFD mice, fibroblastic reticular cells (FRCs) were dysregulated while laying among excessive amounts of disorganized collagen (C). In addition HFD lymph nodes contained a disproportionate amount of cellular debris from damaged or dead cells, increased sinus spacing and decreased immune cell interactions. Specifically, dendritic cells (DCs) that are necessary for adaptive immune response where embedded among extracellular debris with decreased pseudopodia. Similarly, the extraneous fibrous extracellular matrix (ECM) in HFD mice limited contact between lymphocytes (LCs) causing their microvilli extensions to decrease.


Overall, excessive C production within lymph nodes, driven by diet-induced obesity, creates a physical barrier that impedes proper lymph flow and cellular communication. Obesity-induced disorganization of the immune cell guidance network interrupts immune cell adhesion and consequently inhibits travel within cortex regions needed for cell interactions, survival and proliferation.

Keywords: adipose tissue; adiposity; immunity; inflammation; lymphatic system; obesity


  • [1]

    Foster MT, Pagliassotti MJ. Metabolic alterations following visceral fat removal and expansion: beyond anatomic location. Adipocyte. 2012;1:192–9.CrossrefPubMedGoogle Scholar

  • [2]

    Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief 2017;288:1–8.Google Scholar

  • [3]

    Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front Immunol. 2017;8:1745.PubMedCrossrefGoogle Scholar

  • [4]

    Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.CrossrefPubMedGoogle Scholar

  • [5]

    Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010. DOI: .CrossrefGoogle Scholar

  • [6]

    Mauland KK, Eng O, Ytre-Hauge S, Tangen IL, Berg A, Salvesen HB, et al. High visceral fat percentage is associated with poor outcome in endometrial cancer. Oncotarget. 2017;8:105184–95.PubMedGoogle Scholar

  • [7]

    Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Invest. 2018;33(2). DOI: .CrossrefGoogle Scholar

  • [8]

    Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, Franceschi C, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;2:8.CrossrefPubMedGoogle Scholar

  • [9]

    Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicol Pathol. 2006;34:409–24.PubMedCrossrefGoogle Scholar

  • [10]

    Pond CM, Mattacks CA. Interactions between adipose tissue around lymph nodes and lymphoid cells in vitro. J Lipid Res. 1995;36:2219–31.PubMedGoogle Scholar

  • [11]

    Magnuson AM, Regan DP, Fouts JK, Booth AD, Dow SW, Foster MT. Diet-induced obesity causes visceral, but not subcutaneous, lymph node hyperplasia via increases in specific immune cell populations. Cell Prolif. 2017;50. DOI: .CrossrefPubMedGoogle Scholar

  • [12]

    Caer C, Rouault C, Le Roy T, Poitou C, Aron-Wisnewsky J, Torcivia A, et al. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci Rep. 2017;7:3000.PubMedGoogle Scholar

  • [13]

    Arngrim N, Simonsen L, Holst JJ, Bulow J. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects: a possible link between obesity and local tissue inflammation? Int J Obes (Lond). 2013;37:748–50.CrossrefPubMedGoogle Scholar

  • [14]

    Weitman ES, Aschen SZ, Farias-Eisner G, Albano N, Cuzzone DA, Ghanta S, et al. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS One. 2013;8:e70703.PubMedGoogle Scholar

  • [15]

    Morgan OW, Bramley A, Fowlkes A, Freedman DS, Taylor TH, Gargiullo P, et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. PLoS One. 2010;5:e9694.PubMedGoogle Scholar

  • [16]

    Diaz E, Rodriguez A, Martin-Loeches I, Lorente L, del Mar Martin M, Pozo JC, et al. Impact of obesity in patients infected with 2009 influenza A(H1N1). Chest. 2011;139:382–6.CrossrefPubMedGoogle Scholar

  • [17]

    Kwong JC, Campitelli MA, Rosella LC. Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study. Clin Infect Dis. 2011;53:413–21.CrossrefGoogle Scholar

  • [18]

    Karlsson EA, Beck MA. The burden of obesity on infectious disease. Exp Biol Med (Maywood). 2010;235:1412–24.PubMedCrossrefGoogle Scholar

  • [19]

    Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y. Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev. 2014;13:981–1000.CrossrefGoogle Scholar

  • [20]

    Schmitz KH, Neuhouser ML, Agurs-Collins T, Zanetti KA, Cadmus-Bertram L, Dean LT, et al. Impact of obesity on cancer survivorship and the potential relevance of race and ethnicity. J Natl Cancer Inst. 2013;105:1344–54.PubMedCrossrefGoogle Scholar

  • [21]

    Novosad S, Khan S, Wolfe B, Khan A. Role of obesity in asthma control, the obesity-asthma phenotype. J Allergy. 2013;2013:538642.Google Scholar

  • [22]

    Moore LL, Chadid S, Singer MR, Kreger BE, Denis GV. Metabolic health reduces risk of obesity-related cancer in framingham study adults. Cancer Epidemiol Biomarkers Prev. 2014;23:2057–65.CrossrefPubMedGoogle Scholar

  • [23]

    Milner JJ, Beck MA. The impact of obesity on the immune response to infection. Proc Nutr Soc. 2012;71:298–306.CrossrefPubMedGoogle Scholar

  • [24]

    Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB, et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes (Lond). 2012;36:1072–7.CrossrefPubMedGoogle Scholar

  • [25]

    Weber DJ, Rutala WA, Samsa GP, Santimaw JE, Lemon SM. Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. J Am Med Assoc. 1985;254:3187–9.CrossrefGoogle Scholar

  • [26]

    Eliakim A, Schwindt C, Zaldivar F, Casali P, Cooper DM. Reduced tetanus antibody titers in overweight children. Autoimmunity. 2006;39:137–41.CrossrefPubMedGoogle Scholar

  • [27]

    Painter SD, Ovsyannikova IG, Poland GA. The weight of obesity on the human immune response to vaccination. Vaccine. 2015;33:4422–9.PubMedCrossrefGoogle Scholar

  • [28]

    Costanzo AE, Taylor KR, Dutt S, Han PP, Fujioka K, Jameson JM. Obesity impairs gammadelta T cell homeostasis and antiviral function in humans. PLoS One. 2015;10:e0120918.PubMedGoogle Scholar

  • [29]

    Mancuso P. Obesity and respiratory infections: does excess adiposity weigh down host defense? Pulm Pharmacol Ther. 2013;26:412–9.PubMedCrossrefGoogle Scholar

  • [30]

    Kim CS, Lee SC, Kim YM, Kim BS, Choi HS, Kawada T, et al. Visceral fat accumulation induced by a high-fat diet causes the atrophy of mesenteric lymph nodes in obese mice. Obesity (Silver Spring). 2008;16:1261–9.CrossrefPubMedGoogle Scholar

  • [31]

    Kuprys PV, Tsukamoto H, Gao B, Jia L, McGowan J, Coopersmith CM J, et al. Summary of the 2018 alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol. 2018;77:11–18.PubMedGoogle Scholar

  • [32]

    Katakai T, Hara T, Sugai M, Gonda H, Shimizu A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med. 2004;200:783–95.PubMedCrossrefGoogle Scholar

  • [33]

    Girard JP, Moussion C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12:762–73.PubMedCrossrefGoogle Scholar

  • [34]

    Cassimeris L, Zigmond SH. Chemoattractant stimulation of polymorphonuclear leucocyte locomotion. Semin Cell Biol. 1990;1:125–34.PubMedGoogle Scholar

  • [35]

    Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22:19–29.CrossrefGoogle Scholar

  • [36]

    den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid droplets as immune modulators in myeloid cells. Trends Immunol. 2018;39:380–92.CrossrefPubMedGoogle Scholar

  • [37]

    Verdijk P, van Veelen PA, de Ru AH, Hensbergen PJ, Mizuno K, Koerten HK, et al. Morphological changes during dendritic cell maturation correlate with cofilin activation and translocation to the cell membrane. Eur J Immunol. 2004;34:156–64.PubMedCrossrefGoogle Scholar

  • [38]

    Wilhelm M, King B, Silverman AJ, Silver R. Gonadal steroids regulate the number and activational state of mast cells in the medial habenula. Endocrinology. 2000;141:1178–86.PubMedCrossrefGoogle Scholar

  • [39]

    Textor J, Mandl JN, de Boer RJ. The reticular cell network: a robust backbone for immune responses. PLoS Biol. 2016;14:e2000827.PubMedGoogle Scholar

  • [40]

    Novkovic M, Onder L, Cupovic J, Abe J, Bomze D, Cremasco V, et al. Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality. PLoS Biol. 2016;14:e1002515.PubMedGoogle Scholar

  • [41]

    Brown FD, Turley SJ. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J Immunol. 2015;194:1389–94.CrossrefGoogle Scholar

  • [42]

    Valencia J, Jimenez E, Martinez VG, Del Amo BG, Hidalgo L, Entrena A, et al. Characterization of human fibroblastic reticular cells as potential immunotherapeutic tools. Cytotherapy. 2017;19:640–53.PubMedCrossrefGoogle Scholar

  • [43]

    Yang CY, Vogt TK, Favre S, Scarpellino L, Huang HY, Tacchini-Cottier F, et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc Natl Acad Sci USA. 2014;111:E109–18.CrossrefGoogle Scholar

  • [44]

    Acton SE, Farrugia AJ, Astarita JL, Mourao-Sa D, Jenkins RP, Nye E, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014;514:498–502.CrossrefPubMedGoogle Scholar

  • [45]

    Buechler MB, Turley SJ. A short field guide to fibroblast function in immunity. Semin Immunol. 2018;35:48–58.CrossrefGoogle Scholar

  • [46]

    Cavalera M, Wang J, Frangogiannis NG. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl Res. 2014;164:323–35.CrossrefPubMedGoogle Scholar

  • [47]

    Eschalier R, Rossignol P, Kearney-Schwartz A, Adamopoulos C, Karatzidou K, Fay R, et al. Features of cardiac remodeling, associated with blood pressure and fibrosis biomarkers, are frequent in subjects with abdominal obesity. Hypertension (Dallas, TX: 1979). 2014;63:740–6.CrossrefGoogle Scholar

  • [48]

    Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, et al. Liver fibrosis in overweight patients. Gastroenterology. 2000;118:1117–23.PubMedCrossrefGoogle Scholar

  • [49]

    Sharma K. Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int Suppl. 2014;4:113–7.CrossrefGoogle Scholar

  • [50]

    Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094.PubMedCrossrefGoogle Scholar

  • [51]

    Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29:4467–83.PubMedCrossrefGoogle Scholar

  • [52]

    Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293:E1118–28.CrossrefGoogle Scholar

  • [53]

    Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56:901–11.CrossrefPubMedGoogle Scholar

  • [54]

    Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 1997;151:317–22.PubMedGoogle Scholar

  • [55]

    Ravikanth M, Soujanya P, Manjunath K, Saraswathi TR, Ramachandran CR. Heterogenecity of fibroblasts. J Oral Maxillofac Pathol. 2011;15:247–50.CrossrefPubMedGoogle Scholar

  • [56]

    Van Linthout S, Miteva K, Tschope C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102:258–69.PubMedCrossrefGoogle Scholar

  • [57]

    Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.CrossrefPubMedGoogle Scholar

  • [58]

    Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.CrossrefPubMedGoogle Scholar

  • [59]

    Tsigos C, Kyrou I, Chala E, Tsapogas P, Stavridis JC, Raptis SA, et al. Circulating tumor necrosis factor alpha concentrations are higher in abdominal versus peripheral obesity. Metabolism. 1999;48:1332–5.CrossrefPubMedGoogle Scholar

  • [60]

    Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol. 2015;15:350–61.CrossrefPubMedGoogle Scholar

  • [61]

    Anderson AO, Shaw S. Conduit for privileged communications in the lymph node. Immunity. 2005;22:3–5.CrossrefPubMedGoogle Scholar

  • [62]

    Cremasco V, Woodruff MC, Onder L, Cupovic J, Nieves-Bonilla JM, Schildberg FA, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973–81.PubMedCrossrefGoogle Scholar

  • [63]

    Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222:R113–27.CrossrefPubMedGoogle Scholar

  • [64]

    Blüher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab. 2013;27:163–77.CrossrefPubMedGoogle Scholar

  • [65]

    Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity. 2013;21:E439–47.PubMedGoogle Scholar

  • [66]

    Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obesity Facts. 2017;10:207–15.PubMedCrossrefGoogle Scholar

  • [67]

    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1304–10.PubMedCrossrefGoogle Scholar

  • [68]

    Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–8.PubMedCrossrefGoogle Scholar

  • [69]

    Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med. 2000;191:435–44.CrossrefGoogle Scholar

  • [70]

    Worthington JJ, Czajkowska BI, Melton AC, Travis MA. Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8. Gastroenterology. 2011;141:1802–12.CrossrefPubMedGoogle Scholar

  • [71]

    Sun JB, Czerkinsky C, Holmgren J. Sublingual ‘oral tolerance’ induction with antigen conjugated to cholera toxin B subunit generates regulatory T cells that induce apoptosis and depletion of effector T cells. Scand J Immunol. 2007;66:278–86.PubMedCrossrefGoogle Scholar

  • [72]

    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011;34:237–46.PubMedCrossrefGoogle Scholar

  • [73]

    Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med. 2006;203:519–27.CrossrefPubMedGoogle Scholar

  • [74]

    Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med. 2009;206:3101–14.CrossrefPubMedGoogle Scholar

  • [75]

    Geem D, Ngo V, Harusato A, Chassaing B, Gewirtz AT, Newberry RD, et al. Contribution of mesenteric lymph nodes and GALT to the intestinal Foxp3+ regulatory T-cell compartment. Cell Mol Gastroenterol Hepatol. 2016;2:274–80.PubMedCrossrefGoogle Scholar

  • [76]

    Harrell MI, Iritani BM, Ruddell A. Lymph node mapping in the mouse. J Immunol Methods. 2008;332:170–4.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-12-23

Accepted: 2019-04-01

Published Online: 2019-05-28

Funding Source: NIDDK

Award identifier / Grant number: P30DK048520

This study was supported by NIH NIDDK R03DK099425, Funder Id: http://dx.doi.org/10.13039/100000062, Grant Number: P30DK048520.

Author Statement

Conflict of interest: On behalf of all authors, the corresponding author states that there is no conflict of interest.

Informed consent: Not applicable.

Ethical approval: All experiments were conducted in accordance with the National Institutes of Health Guidelines for the Care and Use of Experimental Animals and were approved by the Colorado State University Institutional Animal Care and Use Committee.

Citation Information: Hormone Molecular Biology and Clinical Investigation, 20180083, ISSN (Online) 1868-1891, DOI: https://doi.org/10.1515/hmbci-2018-0083.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in