Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2018: 3.014
5-year IMPACT FACTOR: 3.162

CiteScore 2018: 3.09

SCImago Journal Rank (SJR) 2018: 1.482
Source Normalized Impact per Paper (SNIP) 2018: 0.820

See all formats and pricing
More options …
Volume 395, Issue 1


Stressed to death – mechanisms of ER stress-induced cell death

Natalia Sovolyova / Sandra Healy / Afshin Samali / Susan E. Logue
Published Online: 2013-09-02 | DOI: https://doi.org/10.1515/hsz-2013-0174


The endoplasmic reticulum (ER) is a highly dynamic organelle of fundamental importance present in all eukaryotic cells. The majority of synthesized structural and secreted proteins undergo post-translational modification, folding and oligomerization in the ER lumen, enabling proteins to carry out their physiological functions. Therefore, maintenance of ER homeostasis and function is imperative for proper cellular function. Physiological and pathological conditions can disturb ER homeostasis and thus negatively impact upon protein folding, resulting in an accumulation of unfolded proteins. Examples include hypoxia, hypo- and hyperglycemia, acidosis, and fluxes in calcium levels. Increased levels of unfolded/misfolded proteins within the ER lumen triggers a condition commonly referred to as ‘ER stress’. To combat ER stress, cells have evolved a highly conserved adaptive stress response referred to as the unfolded protein response (UPR). UPR signaling affords the cell a ‘window of opportunity’ for stress resolution however, if prolonged or excessive the UPR is insufficient and ER stress-induced cell death ensues. This review discusses the role of ER stress sensors IRE1, PERK and ATF6, describing their role in ER stress-induced death signaling with specific emphasis placed upon the importance of the intrinsic cell death pathway and Bcl-2 family regulation.

Keywords: cell death; ER stress; unfolded protein response


  • Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., Kluger, Y., and Dynlacht, B.D. (2007). XBP1 Controls diverse Cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66.Google Scholar

  • Asada, R., Kanemoto, S., Kondo, S., Saito, A., and Imaizumi, K. (2011). The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J. Biochem. 149, 507–518.Google Scholar

  • Atkins, C., Liu, Q., Minthorn, E., Zhang, S.Y., Figueroa, D.J., Moss, K., Stanley, T.B., Sanders, B., Goetz, A., Gaul, N., et al. (2013). Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002.Google Scholar

  • Bailly-Maitre, B., Fondevila, C., Kaldas, F., Droin, N., Luciano, F., Ricci, J.E., Croxton, R., Krajewska, M., Zapata, J.M., Kupiec-Weglinski, et al. (2006). Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 103, 2809–2814.Google Scholar

  • Bassik, M.C., Scorrano, L., Oakes, S.A., Pozzan, T., and Korsmeyer, S.J. (2004). Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J. 23, 1207–1216.CrossrefPubMedGoogle Scholar

  • Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332.PubMedGoogle Scholar

  • Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., et al. (2005). ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481.PubMedCrossrefGoogle Scholar

  • Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Ma, D., Coen, D.M., Ron, D., et al. (2005). A selective inhibitor of elF2α dephosphorylation protects cells from ER stress. Science 307, 935–939.Google Scholar

  • Bravo, R., Vicencio, J.M., Parra, V., Troncoso, R., Munoz, J.P., Bui, M., Quiroga, C., Rodriguez, A.E., Verdejo, H.E., Ferreira, J., et al. (2011). Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152.Google Scholar

  • Byrd, A.E., Aragon, I.V., and Brewer, J.W. (2012). MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J. Cell Biol. 196, 689–698.Google Scholar

  • Cawley, K., Logue, S.E., Gorman, A.M., Zeng, Q., Patterson, J., Gupta, S., Samali, A. (2013). Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 8, e73870.Google Scholar

  • Cazanave, S.C., Elmi, N.A., Akazawa, Y., Bronk, S.F., Mott, J.L., and Gores, G.J. (2010). CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G236–G243.Google Scholar

  • Chae, H.J., Kim, H.R., Xu, C., Bailly-Maitre, B., Krajewska, M., Krajewski, S., Banares, S., Cui, J., Digicaylioglu, M., Ke, N., et al. (2004). BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol. Cell 15, 355–366.Google Scholar

  • Chami, M., Oulès, B., Szabadkai, G., Tacine, R., Rizzuto, R. and Paterlini-Bréchot, P. (2008). Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell 32, 641–651.Google Scholar

  • Chen, R., Valencia, I., Zhong, F., McColl, K.S., Roderick, H.L., Bootman, M.D., Berridge, M.J., Conway, S.J., Holmes, A.B., Mignery, G.A., et al. (2004). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol. 166, 193–203.Google Scholar

  • Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., and Green, D.R. (2010). The BCL-2 family reunion. Mol. Cell 37, 299–310.Google Scholar

  • Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047–1058.Google Scholar

  • Connor, J.H., Weiser, D.C., Li, S., Hallenbeck, J.M., and Shenolikar, S. (2001). Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell. Biol. 21, 6841–6850.Google Scholar

  • Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., and Walter, P. (2005). On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 18773–18784.Google Scholar

  • Cullinan, S.B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R.J., and Diehl, J.A. (2003). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209.CrossrefGoogle Scholar

  • de Brito, O.M. and Scorrano, L. (2010). An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29, 2715–2723.Google Scholar

  • Deng, J., Lu, P.D., Zhang, Y., Scheuner, D., Kaufman, R.J., Sonenberg, N., Harding, H.P., and Ron, D. (2004). Translational repression mediates activation of nuclear factor κB by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–10168.PubMedCrossrefGoogle Scholar

  • Donnelly, N., Gorman, A.M., Gupta, S., and Samali, A. (2013). The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493–3511.Google Scholar

  • Donovan, N., Becker, E.B.E., Konishi, Y., and Bonni, A. (2002). JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J. Biol. Chem. 277, 40944–40949.Google Scholar

  • Dremina, E.S., Sharov, V.S., Kumar, K., Zaidi, A., Michaelis, E.K., and Schoneich, C. (2004). Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem. J. 383, 361–370.Google Scholar

  • Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N., and Krause, K.H. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 97, 5723–5728.Google Scholar

  • Gardner, B.M. and Walter, P. (2011). Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894.Google Scholar

  • Giacomello, M., Drago, I., Bortolozzi, M., Scorzeto, M., Gianelle, A., Pizzo, P., and Pozzan, T. (2010). Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38, 280–290.Google Scholar

  • Giacomello, M., Drago, I., Pizzo, P., and Pozzan, T. (2007). Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ. 14, 1267–1274.CrossrefPubMedGoogle Scholar

  • Giorgi, C., Ito, K., Lin, H.K., Santangelo, C., Wieckowski, M.R., Lebiedzinska, M., Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., et al. (2010). PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251.Google Scholar

  • Grimm, S. (2012). The ER-mitochondria interface: the social network of cell death. BBA-Mol Cell Res. 1823, 327–334.Google Scholar

  • Gupta, S., Cuffe, L., Szegezdi, E., Logue, S.E., Neary, C., Healy, S., and Samali, A. (2010). Mechanisms of ER Stress-mediated mitochondrial membrane permeabilization. Int. J. Cell Biol. 2010, 170215.Google Scholar

  • Gupta, S., Read, D.E., Deepti, A., Cawley, K., Gupta, A., Oommen, D., Verfaillie, T., Matus, S., Smith, M.A., Mott, J.L., et al. (2012). Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis. 3, e333.Google Scholar

  • Han, D., Lerner, A.G., Vande Walle, L., Upton, J.P., Xu, W., Hagen, A., Backes, B.J., Oakes, S.A., and Papa, F.R. (2009). IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575.Google Scholar

  • Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve, R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S., Hatzoglou, M., et al. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490.CrossrefPubMedGoogle Scholar

  • Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase. Nature 397, 271–274.Google Scholar

  • Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000a). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108.PubMedCrossrefGoogle Scholar

  • Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H., Ron, D. (2000b). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904.CrossrefPubMedGoogle Scholar

  • Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633.Google Scholar

  • Hayashi, T. and Su, T.P. (2007). Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610.Google Scholar

  • Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell. 10, 3787–3799.Google Scholar

  • Hollien, J. and Weissman, J.S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107.Google Scholar

  • Jiang, C.C., Lucas, K., Avery-Kiejda, K.A., Wade, M., deBock, C.E., Thorne, R.F., Allen, J., Hersey, P., and Zhang, X.D. (2008). Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res. 68, 6708–6717.Google Scholar

  • Kaneko, M., Niinuma, Y., and Nomura, Y. (2003). Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol. Pharm. Bull. 26, 931–935.Google Scholar

  • Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030.CrossrefPubMedGoogle Scholar

  • Kiviluoto, S., Luyten, T., Schneider, L., Lisak, D., Rojas-Rivera, D., Welkenhuyzen, K., Missaen, L., De Smedt, H., Parys, J.B., Hetz, C., et al. (2013). Bax Inhibitor-1-mediated Ca leak is decreased by cytosolic acidosis. Cell Calcium.Google Scholar

  • Kiviluoto, S., Schneider, L., Luyten, T., Vervliet, T., Missiaen, L., De Smedt, H., Parys, J.B., Methner, A., and Bultynck, G. (2012). Bax inhibitor-1 is a novel IP(3) receptor-interacting and -sensitizing protein. Cell Death Disease 3, e367.Google Scholar

  • Kortuem, K.M. and Stewart, A.K. (2013). Carfilzomib. Blood 121, 893–897.Google Scholar

  • Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J., and Sambrook, J. (1988). The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464.Google Scholar

  • Lee, A.H., Iwakoshi, N.N., and Glimcher L.H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459.Google Scholar

  • Lei, K. and Davis, R.J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl. Acad. Sci. USA 100, 2432–2437.Google Scholar

  • Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell. Biol. 186, 783–792.Google Scholar

  • Li, G., Scull, C., Ozcan, L., and Tabas, I. (2010). NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J. Cell. Biol. 191, 1113–1125.Google Scholar

  • Li, J., Lee, B., and Lee, A.S. (2006). Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-UP-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281, 7260–7270.Google Scholar

  • Lin, J.H., Li, H., Yasumura, D., Cohen, H.R., Zhang, C., Panning, B., Shokat, K.M., LaVail, M.M., and Walter, P. (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949.Google Scholar

  • Lin, S.S., Bassik, M.C., Suh, H., Nishino, M., Arroyo, J.D., Hahn, W.C., Korsmeyer, S.J., and Roberts, T.M. (2006). PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J. Biol. Chem. 281, 23003–23012.Google Scholar

  • Lin, W.-C., Chuang, Y.-C., Chang, Y.-S., Lai, M.-D., Teng, Y.-N., Su, I.-J., Wang, C.C.C., Lee, K.-H., and Hung, J.-H. (2012). Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS ONE 7, e39120.Google Scholar

  • Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077.CrossrefPubMedGoogle Scholar

  • Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J.-C., et al. (1997). Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J. Biol. Chem. 272, 25238–25242.Google Scholar

  • McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249–1259.Google Scholar

  • Mimura, N., Fulciniti, M., Gorgun, G., Tai, Y.T., Cirstea, D., Santo, L., Hu, Y., Fabre, C., Minami, J., Ohguchi, H., et al. (2012). Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781.Google Scholar

  • Moenner, M., Pluquet, O., Bouchecareilh, M., and Chevet, E. (2007). Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634.Google Scholar

  • Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., Hori, S., Kakizuka, A., and Ichijo, H. (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355.Google Scholar

  • Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1021.Google Scholar

  • Oakes, S.A., Scorrano, L., Opferman, J.T., Bassik, M.C., Nishino, M., Pozzan, T., and Korsmeyer, S.J. (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 105–110.Google Scholar

  • Papandreou, I., Denko, N.C., Olson, M., Van Melckebeke, H., Lust, S., Tam, A., Solow-Cordero, D.E., Bouley, D.M., Offner, F., Niwa, M., et al. (2011). Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314.Google Scholar

  • Park, S.W. and Ozcan, U. (2013). Potential for therapeutic manipulation of the UPR in disease. Semin. Immunopathol. 35, 351–373.CrossrefPubMedGoogle Scholar

  • Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2000). Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell. Biol. 148, 857–862.Google Scholar

  • Pinton, P. and Rizzuto, R. (2006). Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409–1418.PubMedCrossrefGoogle Scholar

  • Puthalakath, H., O’Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm-Breschkin, J., Motoyama, N., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349.Google Scholar

  • Reimertz, C., Kögel, D., Rami, A., Chittenden, T., and Prehn, J.H.M. (2003). Gene expression during ER stress-induced apoptosis in neurons: Induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J. Cell. Biol. 162, 587–597.Google Scholar

  • Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., et al. (2009). Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787, 1342–1351.Google Scholar

  • Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A.-H., Yoshida, H., Mori, K., Glimcher, L.H., Denko, N.C., Giaccia, A.J., et al. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947.Google Scholar

  • Samali, A., Zhivotovsky, B., Jones, D., Nagata, S., and Orrenius, S. (1999). Apoptosis: cell death defined by caspase activation. Cell Death Differ. 6, 495–496.CrossrefPubMedGoogle Scholar

  • Shen, Y., Meunier, L., and Hendershot, L.M. (2002). Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem. 277, 15947–15956.Google Scholar

  • Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell. Biol. 144, 281–292.Google Scholar

  • Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell. Biol. 175, 901–911.Google Scholar

  • Szegezdi, E., Herbert, K.R., Kavanagh, E.T., Samali, A., and Gorman, A.M. (2008). Nerve growth factor blocks thapsigargin-induced apoptosis at the level of the mitochondrion via regulation of Bim. J. Cell. Mol. Med. 12, 2482–2496.CrossrefGoogle Scholar

  • Timmins, J.M., Ozcan, L., Seimon, T.A., Li, G., Malagelada, C., Backs, J., Backs, T., Bassel-Duby, R., Olson, E.N., Anderson, M.E., et al. (2009). Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J. Clin. Invest. 119, 2925–2941.Google Scholar

  • Tirasophon, W., Welihinda, A.A., and Kaufman, R.J. (1998). A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824.Google Scholar

  • Upton, J.P., Wang, L., Han, D., Wang, E.S., Huskey, N.E., Lim, L., Truitt, M., McManus, M.T., Ruggero, D., Goga, A., et al. (2012). IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822.Google Scholar

  • Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P., and Ron, D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666.Google Scholar

  • Verfaillie, T., Rubio, N., Garg, A.D., Bultynck, G., Rizzuto, R., Decuypere, J.P., Piette, J., Linehan, C., Gupta, S., Samali, A., et al. (2012). PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 438, 500–506.Google Scholar

  • Wang, S. and Kaufman, R.J. (2012). The impact of the unfolded protein response on human disease. J. Cell. Biol. 197, 857–867.Google Scholar

  • Wang, X., Eno, C.O., Altman, B.J., Zhu, Y., Zhao, G., Olberding, K.E., Rathmell, J.C., and Li, C. (2011). ER stress modulates cellular metabolism. Biochem. J. 435, 285–296.Google Scholar

  • Wang, X.Z., Harding, H.P., Zhang, Y., Jolicoeur, E.M., Kuroda, M., and Ron, D. (1998). Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708–5717.Google Scholar

  • Wei, M.C., Zong, W.X., Cheng, E.H.Y., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., Macgregor, G.R., Thompson, C.B., and Korsmeyer, S.J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.Google Scholar

  • White, C., Li, C., Yang, J., Petrenko, N.B., Madesh, M., Thompson, C.B., and Foskett, J.K. (2005). The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat. Cell Biol. 7, 1021–1028.Google Scholar

  • Yamamoto, K., Ichijo, H., and Korsmeyer, S.J. (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Molecular and Cell. Biol. 19, 8469–8478.Google Scholar

  • Yamazaki, H., Hiramatsu, N., Hayakawa, K., Tagawa, Y., Okamura, M., Ogata, R., Huang, T., Nakajima, S., Yao, J., Paton, A.W., et al. (2009). Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J. Immunol. 183, 1480–1487.Google Scholar

  • Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.Google Scholar

  • Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.Google Scholar

  • Zou, H., Li, Y., Liu, X., and Wang, X. (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.Google Scholar

About the article

Corresponding author: Susan E. Logue, Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland, e-mail:

Received: 2013-05-10

Accepted: 2013-08-21

Published Online: 2013-09-02

Published in Print: 2014-01-01

Citation Information: Biological Chemistry, Volume 395, Issue 1, Pages 1–13, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0174.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

YuRong Fu, YongCheng Jin, Yun Zhao, AnShan Shan, HengTong Fang, JingLin Shen, ChangHai Zhou, Hao Yu, Yong Feng Zhou, Xin Wang, JunMei Wang, RuiHua Li, Rui Wang, and Jing Zhang
Journal of Dairy Science, 2019
Zhi Chen, Di Wen, Fen Wang, Chunbo Wang, and Lei Yang
Reproductive Biology and Endocrinology, 2019, Volume 17, Number 1
Michelle H. Lee, Rena G. Lapidus, Dana Ferraris, and Ashkan Emadi
Molecules, 2019, Volume 24, Number 17, Page 3121
Femke Heindryckx, François Binet, Markella Ponticos, Krista Rombouts, Joey Lau, Johan Kreuger, and Pär Gerwins
EMBO Molecular Medicine, 2016, Volume 8, Number 7, Page 729
Lukáš Moráň, Tiziana Pivetta, Sebastiano Masuri, Kateřina Vašíčková, Franziska Walter, Jochen Prehn, Moustafa Elkalaf, Jan Trnka, Josef Havel, and Petr Vaňhara
Metallomics, 2019
Keshab Kumar Karna, Yu Seob Shin, Bo Ram Choi, Hye Kyung Kim, and Jong Kwan Park
The World Journal of Men's Health, 2019, Volume 37
Yin-Yin Chen, Xiao-Fei Peng, Guo-Yong Liu, Jin-Song Liu, Lin Sun, Hong Liu, Li Xiao, and Li-Yu He
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2019, Volume 1865, Number 10, Page 2563
Rui Wang, Xingyun Xu, Zongbing Hao, Shun Zhang, Dan Wu, Hongyang Sun, Chenchen Mu, Haigang Ren, and Guanghui Wang
Neuroscience Bulletin, 2019
Parvaneh Mehrbod, Sudharsana R. Ande, Javad Alizadeh, Shahrzad Rahimizadeh, Aryana Shariati, Hadis Malek, Mohammad Hashemi, Kathleen K. M. Glover, Affan A. Sher, Kevin M. Coombs, and Saeid Ghavami
Virulence, 2019, Volume 10, Number 1, Page 376
Julianna Kobolák, Kinga Molnár, Eszter Varga, István Bock, Bálint Jezsó, Annamária Téglási, Shuling Zhou, Maria Lo Giudice, Marianne Hoogeveen-Westerveld, WWM Pim Pijnappel, Phetcharat Phanthong, Norbert Varga, Narisorn Kitiyanant, Kristine Freude, Hideyuki Nakanishi, Lajos László, Poul Hyttel, and András Dinnyés
Experimental Cell Research, 2019, Volume 380, Number 2, Page 216
Junlin Pan, YuanYuan Yao, Xiuxiu Guo, Fengyun Kong, Jun Zhou, and Xiaoqian Meng
Journal of Cellular Physiology, 2019, Volume 234, Number 11, Page 19807
Karem H. Alzoubi, Zuhair A. Hasan, Omar F. Khabour, Fadia A. Mayyas, Omar N. Al Yacoub, Saleem A. Banihani, Mahmoud A. Alomari, and Nasr NS Alrabadi
Physiology & Behavior, 2019, Volume 206, Page 200
Jian Shu, Liuyi Dang, Dandan Zhang, Punit Shah, Lijun Chen, Hui Zhang, and Shisheng Sun
The FEBS Journal, 2019, Volume 286, Number 8, Page 1594
Eun-Jung Park, Eunsol Seong, Younghoon Kim, and Kyuhong Lee
Toxicology in Vitro, 2019, Volume 57, Page 132
Ji-Ting Hou, Hyeong Seok Kim, Chong Duan, Myung Sun Ji, Shan Wang, Lintao Zeng, Wen Xiu Ren, and Jong Seung Kim
Chemical Communications, 2019, Volume 55, Number 17, Page 2533
Yang Liu, Xiaoling Lin, Qingyong Li, Min Wang, Mao Zhou, Zhi Wang, Shuling Peng, Ruiwen Ren, Erdong Yuan, and Jiaoyan Ren
Food & Function, 2019, Volume 10, Number 2, Page 1191
Minzhong Yu, Weiming Yan, and Craig Beight
BioMed Research International, 2018, Volume 2018, Page 1
Wei Chen, Xuelong Qian, Yue Hu, Wei Jin, Yunlong Shan, Xianying Fang, Yang Sun, Biao Yu, Qiong Luo, and Qiang Xu
Journal of Pharmacological Sciences, 2018
Benjamin M. Johnson, Faisal F. Y. Radwan, Azim Hossain, Bently P. Doonan, Jessica D. Hathaway-Schrader, Jason M. God, Christina V. Voelkel-Johnson, Narendra L. Banik, Sakamuri V. Reddy, and Azizul Haque
Journal of Cellular Biochemistry, 2018
Evan Angelos and Federica Brandizzi
The Plant Journal, 2018
Paula Szalai, Jan B. Parys, Geert Bultynck, Søren Brøgger Christensen, Poul Nissen, Jesper V. Møller, and Nikolai Engedal
Cell Calcium, 2018
Chamari S. Wijesooriya, Megan Nieszala, Alex Stafford, Jake R. Zimmerman, and Emily A. Smith
Photochemistry and Photobiology, 2018
Pan Liu, Xiao Chen, Haizhe Zhou, Liqun Wang, Zaijun Zhang, Xiaohu Ren, Feiqi Zhu, Yi Guo, Xinfeng Huang, Jianjun Liu, Peter S. Spencer, and Xifei Yang
Oxidative Medicine and Cellular Longevity, 2018, Volume 2018, Page 1
Noriko Goto, Mariko Tsujimoto, Hiroshi Nagai, Taro Masaki, Shosuke Ito, Kazumasa Wakamatsu, and Chikako Nishigori
Experimental Dermatology, 2018, Volume 27, Number 7, Page 754
Hongying Liang, Tong He, Jimin Long, Liangliang Liu, Guochao Liao, Yanhuai Ding, and Yi Cao
Toxicology Mechanisms and Methods, 2018, Page 1
Xiaozhen Chen, Yinglin Wang, Xiang Xie, Hongfei Chen, Qiqi Zhu, Zhidong Ge, Hua Wei, Jingshong Deng, Zhengyuan Xia, and Qingquan Lian
Mediators of Inflammation, 2018, Volume 2018, Page 1
Wenzhen Xiao, Ying Fan, Niansong Wang, Peter Y. Chuang, Kyung Lee, and John Cijiang He
American Journal of Physiology-Renal Physiology, 2016, Volume 310, Number 5, Page F409
Sumeet Solanki, Prabhatchandra R. Dube, Jean-Yves Tano, Lutz Birnbaumer, and Guillermo Vazquez
American Journal of Physiology-Cell Physiology, 2014, Volume 307, Number 6, Page C521
Sabine Hombach-Klonisch, Maryam Mehrpour, Shahla Shojaei, Craig Harlos, Marshall Pitz, Ahmed Hamai, Krzysztof Siemianowicz, Wirginia Likus, Emilia Wiechec, Brian D. Toyota, Reyhane Hoshyar, Amir Seyfoori, Zahra Sepehri, Sudharsana R. Ande, Forough Khadem, Mohsen Akbari, Adrienne M. Gorman, Afshin Samali, Thomas Klonisch, and Saeid Ghavami
Pharmacology & Therapeutics, 2017
Qian Jiang, Shuai Chen, Wenkai Ren, Gang Liu, Kang Yao, Guoyao Wu, and Yulong Yin
Amino Acids, 2017
Nai-Ying Shen, Jian-Bin Bi, Jing-Yao Zhang, Si-Min Zhang, Jing-Xian Gu, Kai Qu, and Chang Liu
World Journal of Gastroenterology, 2017, Volume 23, Number 8, Page 1375
Carolina Andrea Vera, Lorena Oróstica, Fernando Gabler, Arturo Ferreira, Alberto Selman, Margarita Vega, and Carmen Aurora Romero
International Journal of Oncology, 2017, Volume 50, Number 4, Page 1261
Yi Cao, Jimin Long, Liangliang Liu, Tong He, Leying Jiang, Chunxue Zhao, and Zhen Li
Life Sciences, 2017, Volume 186, Page 33
Yun Tao-Gu, Jian Chen, Zhu-Long Meng, Wan-Yu Ge, Yang-Yang Bian, Shao-Wen Cheng, Chen-Kun Xing, Jiang-Ling Yao, Jian Fu, and Lei Peng
Biomedicine & Pharmacotherapy, 2017, Volume 93, Page 1246
Yichen Wang, Eijiro Yamada, Haihong Zong, and Jeffrey E. Pessin
Journal of Biological Chemistry, 2015, Volume 290, Number 41, Page 24772
Ayat S. Hammad, Sreenithya Ravindran, Ashraf Khalil, and Shankar Munusamy
Cell Stress and Chaperones, 2017, Volume 22, Number 3, Page 417
Guoyin Liu, Ting Guo, Yong Zhang, Naicheng Liu, Jiangning Chen, Jianmin Chen, Junfeng Zhang, and Jianning Zhao
APMIS, 2017, Volume 125, Number 6, Page 565
Toshio Sakatani, Keita Maemura, Noriko Hiyama, Yosuke Amano, Kousuke Watanabe, Hidenori Kage, Masashi Fukayama, Jun Nakajima, Yutaka Yatomi, Takahide Nagase, and Daiya Takai
Japanese Journal of Clinical Oncology, 2017, Volume 47, Number 6, Page 543
Pooneh Mokarram, Mohammed Albokashy, Maryam Zarghooni, Mohammad Amin Moosavi, Zahra Sepehri, Qi Min Chen, Andrzej Hudecki, Aliyeh Sargazi, Javad Alizadeh, Adel Rezaei Moghadam, Mohammad Hashemi, Hesam Movassagh, Thomas Klonisch, Ali Akbar Owji, Marek J. Łos, and Saeid Ghavami
Autophagy, 2017, Volume 13, Number 5, Page 781
Zenpei Shigemi, Kazuki Manabe, Naoko Hara, Yusuke Baba, Kohei Hosokawa, Hiroki Kagawa, Tadashi Watanabe, and Masahiro Fujimuro
Chemico-Biological Interactions, 2017, Volume 266, Page 28
Junjie Lan, Ning Wang, Lan Huang, Yazhou Liu, Xiaopan Ma, Huayong Lou, Chao Chen, Yibin Feng, and Weidong Pan
European Journal of Medicinal Chemistry, 2017, Volume 127, Page 554
Wanida Tungkum, Pichaya Jumnongprakhon, Chainarong Tocharus, Piyarat Govitrapong, and Jiraporn Tocharus
The Journal of Toxicological Sciences, 2017, Volume 42, Number 1, Page 63
Yuying Feng, Liang Ma, Linfeng Liu, Hyokyoung Grace Hong, Xuemei Zhang, Fan Guo, Rongshuang Huang, Min Shi, Yi Li, Ling Zhang, and Ping Fu
RSC Adv., 2016, Volume 6, Number 111, Page 109639
Silvia Grottelli, Ilaria Ferrari, Grazia Pietrini, Matthew Peirce, Alba Minelli, and Ilaria Bellezza
International Journal of Molecular Sciences, 2016, Volume 17, Number 8, Page 1332
Rafaela M.M. Paim, Ricardo N. Araujo, Miguel Leis, Mauricio R.V. Sant'anna, Nelder F. Gontijo, Claudio R. Lazzari, and Marcos H. Pereira
Insect Biochemistry and Molecular Biology, 2016, Volume 77, Page 10
Kosuke Izumi, Maggie Brett, Eriko Nishi, Séverine Drunat, Ee-Shien Tan, Katsunori Fujiki, Sophie Lebon, Breana Cham, Koji Masuda, Michiko Arakawa, Adeline Jacquinet, Yusuke Yamazumi, Shu-Ting Chen, Alain Verloes, Yuki Okada, Yuki Katou, Tomohiko Nakamura, Tetsu Akiyama, Pierre Gressens, Roger Foo, Sandrine Passemard, Ene-Choo Tan, Vincent El Ghouzzi, and Katsuhiko Shirahige
The American Journal of Human Genetics, 2016, Volume 99, Number 2, Page 451
Alan Shiels and J. Fielding Hejtmancik
Experimental Eye Research, 2017, Volume 156, Page 95
Chi-Ming Chan, Duen-Yi Huang, Yi-Pin Huang, Shu-Hao Hsu, Lan-Ya Kang, Chung-Min Shen, and Wan-Wan Lin
Journal of Cellular and Molecular Medicine, 2016, Volume 20, Number 9, Page 1749
Wei-Yang Chen, Jingwen Zhang, Smita Ghare, Shirish Barve, Craig McClain, and Swati Joshi-Barve
Cellular and Molecular Gastroenterology and Hepatology, 2016, Volume 2, Number 5, Page 685
Sahishna Phaniraj, Zhe Gao, Digamber Rane, and Blake R. Peterson
Dyes and Pigments, 2016, Volume 135, Page 127
Alberto Valdés, Konstantin A. Artemenko, Jonas Bergquist, Virginia García-Cañas, and Alejandro Cifuentes
Journal of Proteome Research, 2016, Volume 15, Number 6, Page 1971
Zhiwei Ma, Wenliang Yao, Chi-Chao Chan, Chitra Kannabiran, Eric Wawrousek, and J. Fielding Hejtmancik
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2016, Volume 1862, Number 6, Page 1214
Pramod Sukumaran, Anne Schaar, Yuyang Sun, and Brij B Singh
Cell Calcium, 2016, Volume 60, Number 2, Page 123
Shu-Xun Liu, Hang-Yu Yang, Si-Yu Li, Jia-Yue Zhang, Teng Li, Bao-Qing Zhu, and Bo-Lin Zhang
Molecules, 2015, Volume 20, Number 11, Page 19865
International Journal of Molecular Medicine, 2015, Volume 36, Number 5, Page 1311
Jun He, Longsheng Du, Meimei Bao, Bin Zhang, Haixin Qian, Quansheng Zhou, and Zhifei Cao
Anti-Cancer Drugs, 2016, Volume 27, Number 3, Page 204
Mahmoud Iranpour, Adel Rezaei Moghadam, Mina Yazdi, Sudharsana R. Ande, Javad Alizadeh, Emilia Wiechec, Robbin Lindsay, Michael Drebot, Kevin M. Coombs, and Saeid Ghavami
Expert Reviews in Molecular Medicine, 2016, Volume 18
Irina Milisav, Dušan Šuput, and Samo Ribarič
Molecules, 2015, Volume 20, Number 12, Page 22718
Zenpei Shigemi, Yusuke Baba, Naoko Hara, Jumpei Matsuhiro, Hiroki Kagawa, Tadashi Watanabe, and Masahiro Fujimuro
Biochemical and Biophysical Research Communications, 2016, Volume 469, Number 3, Page 565
H. Xu, S. Ma, F.-Y. Tang, Y. Chen, H. Zhou, M. Chen, B. Wang, X. Liu, and X. Xie
Herz, 2016, Volume 41, Number 5, Page 428
Gustavo Monteiro Viana, Marcus Vinícius Buri, Edgar Julian Paredes-Gamero, Ana Maria Martins, and Vânia D'Almeida
Journal of Cellular Physiology, 2016, Volume 231, Number 3, Page 698
Hila Danino, Karin Ben-Dror, and Ruth Birk
Experimental Cell Research, 2015, Volume 339, Number 2, Page 397
Marta Pajares, Natalia Jiménez-Moreno, Irundika H.K. Dias, Bilge Debelec, Milica Vucetic, Kari E. Fladmark, Huveyda Basaga, Samo Ribaric, Irina Milisav, and Antonio Cuadrado
Redox Biology, 2015, Volume 6, Page 409
J. Matthew Meinig, Liqiang Fu, and Blake R. Peterson
Angewandte Chemie, 2015, Volume 127, Number 33, Page 9832
J. Matthew Meinig, Liqiang Fu, and Blake R. Peterson
Angewandte Chemie International Edition, 2015, Volume 54, Number 33, Page 9696
Sonam Parakh and Julie D. Atkin
Frontiers in Cell and Developmental Biology, 2015, Volume 3
Pengfei Lin, Fenglei Chen, Jin Sun, Jinhua Zhou, Xiangguo Wang, Nan Wang, Xiao Li, Zhe Zhang, Aihua Wang, and YaPing Jin
Reproductive Toxicology, 2015, Volume 52, Page 71
Linda Nguyen, Brandon P. Lucke-Wold, Shona A. Mookerjee, John Z. Cavendish, Matthew J. Robson, Anna L. Scandinaro, and Rae R. Matsumoto
Journal of Pharmacological Sciences, 2015, Volume 127, Number 1, Page 17
W Li, Z Ouyang, Q Zhang, L Wang, Y Shen, X Wu, Y Gu, Y Shu, B Yu, X Wu, Y Sun, and Q Xu
Cell Death and Disease, 2014, Volume 5, Number 12, Page e1581
Xiaohui Li, Yarui Wang, Huan Wang, Cheng Huang, Yan Huang, and Jun Li
Inflammation Research, 2015, Volume 64, Number 1, Page 1
Stefano Ghirardello, Elisa Dusi, Bianca Castiglione, Monica Fumagalli, and Fabio Mosca
Italian Journal of Pediatrics, 2014, Volume 40, Number 1
Huige Li, Sven Horke, and Ulrich Förstermann
Atherosclerosis, 2014, Volume 237, Number 1, Page 208
Daniel Ackerman and M. Celeste Simon
Trends in Cell Biology, 2014, Volume 24, Number 8, Page 472
Judit Varga, Judit Bátor, Márton Péter, Zita Árvai, Marianna Pap, György Sétáló, and József Szeberényi
Cell and Tissue Research, 2014, Volume 358, Number 1, Page 65
Sara E. Patterson and Caroline N. Dealy
Developmental Dynamics, 2014, Volume 243, Number 7, Page 875
Sabine Hombach-Klonisch, Suchitra Natarajan, Thatchawan Thanasupawat, Manoj Medapati, Alok Pathak, Saeid Ghavami, and Thomas Klonisch
Frontiers in Endocrinology, 2014, Volume 5
Hristina Ivanova, Tim Vervliet, Ludwig Missiaen, Jan B. Parys, Humbert De Smedt, and Geert Bultynck
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, Volume 1843, Number 10, Page 2164

Comments (0)

Please log in or register to comment.
Log in