Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biological Chemistry

Editor-in-Chief: Brüne, Bernhard

Editorial Board: Buchner, Johannes / Lei, Ming / Ludwig, Stephan / Thomas, Douglas D. / Turk, Boris / Wittinghofer, Alfred

IMPACT FACTOR 2017: 3.022

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 1.562
Source Normalized Impact per Paper (SNIP) 2017: 0.705

See all formats and pricing
More options …
Volume 395, Issue 1


Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis

Yoandris del Toro Duany
  • Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149 Münster, Germany
  • Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agneyo Ganguly
  • Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149 Münster, Germany
  • Present address: Department of Biotechnology, Presidency University, 86/1 College Street, Kolkata 700073, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dagmar Klostermeier
  • Corresponding author
  • Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-16 | DOI: https://doi.org/10.1515/hsz-2013-0177


Reverse gyrase catalyzes the ATP-dependent introduction of positive supercoils into DNA. Supercoiling requires the functional cooperation of its N-terminal helicase domain with the C-terminal topoisomerase domain. The helicase domain contains a superfamily 2 helicase core formed by two RecA domains, H1 and H2. We show here that a helicase domain lacking the latch, an insertion in H2, fails to close the cleft in the helicase core in response to nucleotide and DNA binding at the beginning of the catalytic cycle. In the presence of the pre-hydrolysis ATP analog ADP·BeFx, however, the closed conformer can still be formed in the absence of the latch. The helicase domain lacking the latch exhibits reduced DNA affinities. The energetic difference between the two nucleotide states involved in duplex separation is diminished, rationalizing the unwinding deficiency of reverse gyrase lacking the latch. The latch most strongly contributes to binding of single-stranded DNA in the post-hydrolysis state, before phosphate release. Our results are in line with contributions of the latch in determining the direction of strand passage, and in orienting the cleaved single-stranded DNA for re-ligation. At the same time, the latch may coordinate the re-ligation reaction with strand passage and with the nucleotide cycle.

This article offers supplementary material which is provided at the end of the article.

Keywords: DNA unwinding; helicase; latch; nucleotide cycle; positive supercoiling; topoisomerase


  • Andreou, A.Z. and Klostermeier, D. (2012). Conformational changes of DEAD-box helicases monitored by single molecule fluorescence resonance energy transfer. Methods Enzymol 511, 75–109.Web of ScienceGoogle Scholar

  • Aregger, R. and Klostermeier, D. (2009). The DEAD-box helicase YxiN maintains a closed conformation during ATP hydrolysis. Biochemistry 48, 10679–10681.Web of ScienceGoogle Scholar

  • Bouthier de la Tour, C., Amrani, L., Cossard, R., Neuman, K., Serre, M.C., and Duguet, M. (2008). Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase. J. Biol. Chem. 283, 27395–27402.Google Scholar

  • Capp, C., Qian, Y., Sage, H., Huber, H., and Hsieh, T.S. (2010). Separate and combined biochemical activities of the subunits of a naturally split reverse gyrase. J Biol. Chem. 285, 39637–39645.Web of ScienceGoogle Scholar

  • Declais, A.C., Marsault, J., Confalonieri, F., de La Tour, C.B., and Duguet, M. (2000). Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling. J. Biol. Chem. 275, 19498–19504.Google Scholar

  • del Toro Duany, Y. and Klostermeier, D. (2011). Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing. Phys. Chem. Chem. Phys. 13, 10009–10019.Google Scholar

  • del Toro Duany, Y., Jungblut, S.P., Schmidt, A.S., and Klostermeier, D. (2008). The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain. Nucleic Acids Res. 36, 5882–5895.Web of ScienceGoogle Scholar

  • del Toro Duany, Y., Rudolph, M.G, and Klostermeier, D. (2011). The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain. Biochemistry 50, 5816–5823.Google Scholar

  • Forterre, P. (2002). A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 18, 236–237.Google Scholar

  • Ganguly, A., del Toro Duany, Y., Rudolph, M.G., and Klostermeier, D. (2011). The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling. Nucleic Acids Res. 39, 1789–1800.Web of ScienceGoogle Scholar

  • Ganguly, A., del Toro Duany, Y., and Klostermeier, D. (2013). Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction. J. Mol. Biol. 425, 32–40.Web of ScienceGoogle Scholar

  • Hilbert, M., Karow, A.R., and Klostermeier, D. (2009). The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Biol. Chem. 390, 1237–1250.Google Scholar

  • Hsieh, T.S. and Plank, J.L. (2006). Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate. J. Biol. Chem. 281, 5640–5647.Google Scholar

  • Jungblut, S.P. and Klostermeier, D. (2007). Adenosine 5′-O- (3-thio)triphosphate (ATPγS) promotes positive supercoiling of DNA by T. maritima reverse gyrase. J. Mol. Biol. 371, 197–209.Web of ScienceGoogle Scholar

  • Kampmann, M. and Stock, D. (2004). Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Res. 32, 3537–3545.Google Scholar

  • Kikuchi, A. and Asai, K. (1984). Reverse gyrase – a topoisomerase which introduces positive superhelical turns into DNA. Nature 309, 677–681.Google Scholar

  • Krah, R., Kozyavkin, S.A., Slesarev, A.I., and Gellert, M. (1996). A two-subunit type I DNA topoisomerase (reverse gyrase) from an extreme hyperthermophile. Proc. Natl. Acad. Sci. USA 93, 106–110.Google Scholar

  • Krah, R., O’Dea, M.H., and Gellert, M. (1997). Reverse gyrase from Methanopyrus kandleri. Reconstitution of an active extremozyme from its two recombinant subunits. J. Biol. Chem. 272, 13986–13990.Google Scholar

  • Liu, F., Putnam, A., and Jankowsky, E. (2008). ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl. Acad. Sci. USA 51, 20209–20214.Google Scholar

  • Nakasu, S. and Kikuchi, A. (1985). Reverse gyrase; ATP-dependent type I topoisomerase from Sulfolobus. EMBO J. 4, 2705–2710.Google Scholar

  • Perugino, G., Valenti, A., D’Amaro, A., Rossi, M., and Ciaramella, M. (2009). Reverse gyrase and genome stability in hyperthermophilic organisms. Biochem. Soc. Trans. 37, 69–73.Web of ScienceGoogle Scholar

  • Rodriguez, A.C. (2002). Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional ‘latch’ in the mechanism of reverse gyrase. J. Biol. Chem. 277, 29865–29873.Google Scholar

  • Rodriguez, A.C. (2003). Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase. Biochemistry 42, 5993–6004.Google Scholar

  • Rodriguez, A.C. and Stock, D. (2002). Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA. EMBO J. 21, 418–426.Google Scholar

  • Rudolph, M.G., del Toro Duany, Y., Jungblut, S.P., Ganguly, A., and Klostermeier, D. (2013). Crystal structures of Thermotoga maritima reverse gyrase: Inferences for the mechanism of positive DNA supercoiling. Nucleic Acids Res. 41, 1058–1070.Web of ScienceGoogle Scholar

  • Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S., and Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300.Google Scholar

  • Theissen, B., Karow, A.R., Kohler, J., Gubaev, A., and Klostermeier, D. (2008). Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase. Proc. Natl. Acad. Sci. USA 105, 548–553.Google Scholar

About the article

Corresponding author: Dagmar Klostermeier, Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149 Münster, Germany, e-mail:

Received: 2013-05-13

Accepted: 2013-08-14

Published Online: 2013-08-16

Published in Print: 2014-01-01

Citation Information: Biological Chemistry, Volume 395, Issue 1, Pages 83–93, ISSN (Online) 1437-4315, ISSN (Print) 1431-6730, DOI: https://doi.org/10.1515/hsz-2013-0177.

Export Citation

©2014 by Walter de Gruyter Berlin Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pavel Lulchev and Dagmar Klostermeier
Nucleic Acids Research, 2014, Volume 42, Number 13, Page 8200

Comments (0)

Please log in or register to comment.
Log in