Jump to ContentJump to Main Navigation
Show Summary Details
More options …

High Temperature Materials and Processes

Editor-in-Chief: Fukuyama, Hiroyuki

Editorial Board Member: Waseda, Yoshio / Fecht, Hans-Jörg / Reddy, Ramana G. / Manna, Indranil / Nakajima, Hideo / Nakamura, Takashi / Okabe, Toru / Ostrovski, Oleg / Pericleous, Koulis / Seetharaman, Seshadri / Straumal, Boris / Suzuki, Shigeru / Tanaka, Toshihiro / Terzieff, Peter / Uda, Satoshi / Urban, Knut / Baron, Michel / Besterci, Michael / Byakova, Alexandra V. / Gao, Wei / Glaeser, Andreas / Gzesik, Z. / Hosson, Jeff / Masanori, Iwase / Jacob, Kallarackel Thomas / Kipouros, Georges / Kuznezov, Fedor

10 Issues per year


IMPACT FACTOR 2016: 0.312
5-year IMPACT FACTOR: 0.393

CiteScore 2016: 0.37

SCImago Journal Rank (SJR) 2015: 0.205
Source Normalized Impact per Paper (SNIP) 2015: 0.411

Online
ISSN
2191-0324
See all formats and pricing
More options …
Volume 35, Issue 7 (Aug 2016)

Issues

Line-Profile Analysis Combined with Texture Analysis for Characterizing Dislocation Distribution in Texture Components of Cold-Rolled Copper Sheets

Kozue Satoh / Shigeo Sato / Kenta Yamanaka / Shigeru Suzuki
  • Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980–8577, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Akihiko Chiba / Kazuaki Wagatsuma
Published Online: 2016-07-27 | DOI: https://doi.org/10.1515/htmp-2015-0039

Abstract

We described a newly developed characterization technique that dislocation density could be individually determined for each texture component of plastically deformed metals by combining the line-profile analysis with the texture analysis by using X-ray diffraction. This method was applied to major texture components of cube, copper, and brass evolved in cold-rolled copper sheets. The Warren–Averbach procedure using two diffraction peaks was used for estimating the dislocation density. An increase in the dislocation density with the rolling reduction was evaluated for individual texture components. Although the individual texture components underwent the different slip paths, the dislocation densities in these texture components were almost comparable; however, the non-texture component was shown to have a higher dislocation density than the texture components. The recovery and recrystallization proceeded preferentially in the non-texture component.

Keywords: X-ray diffraction; line-profile analysis; texture; dislocation; copper; recrystallization

PACS: 61.05.cp; 81.40.Ef

References

  • [1] A. Borbély, J.H. Driver and T. Ungár, Acta Mater., 48 (2000) 2005–2016.Google Scholar

  • [2] M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Mater. Sci. Eng. A., 527 (2010) 2738–2746.Google Scholar

  • [3] S. Zaefferer, P. Romano and F. Friedel, J. Microsc., 230 (2008) 499–508.Google Scholar

  • [4] R.L. Every and M. Hatherly, Texture Cryst. Solids., 1 (1974) 183–194.Google Scholar

  • [5] T. Ungár and A. Borbély, Appl. Phys. Lett., 69 (1996) 3173–3175.Google Scholar

  • [6] S. Sato, T. Yoshimura, Y. Takahashi, N. Yamada, K. Wagatsuma and S. Suzuki, Powder Diffr., 26 (2011) 129–133.Google Scholar

  • [7] S. Ryufuku, T. Suzuki, H. Suzuki and Y. Tomota, Tetsu-to-Hagane., 94 (2008) 121–129.Google Scholar

  • [8] Th.H. de Keijser, J.I. Langford, E.J. Mittemeijer and A.B.P. Vogels, J. Appl. Cryst., 15 (1982) 308–314.Google Scholar

  • [9] R.I. Garrod and J.H. Auld, Acta Metall., 3 (1955) 190–198.Google Scholar

  • [10] R. Hielscher and H. Schaeben, J. Appl. Cryst., 41 (2008) 1024–1037.Google Scholar

  • [11] J. Ladell, W. Parrish and J. Taylor, Acta Cryst., 12 (1959)561–567.Google Scholar

  • [12] A.R. Stokes, Proc. Phys. Soc., 61 (1948) 382–391.Google Scholar

  • [13] B.E. Warren and B.L. Averbach, J. Appl. Phys., 21 (1950) 595–599.Google Scholar

  • [14] T. Ungár and G. Tichy, Phys. Stat. Sol. (a)., 171 (1999) 425–434.Google Scholar

  • [15] J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon and Y.M. Koo, Acta Mater., 60 (2012) 2290–2299.Google Scholar

  • [16] C. Herrera, D. Ponge and D. Raabe, Acta Mater., 59 (2011) 4653–4664.Google Scholar

  • [17] M. Calcagnotto, D. Ponge, D. Demir and D. Raabe, Mater. Sci. Eng. A., 527 (2010) 2738–2746.Google Scholar

  • [18] R.A. Young and D.B. Wiles, J. Appl. Cryst., 15 (1982) 430–438.Google Scholar

  • [19] S.H. Kim, S.Z. Han, C.J. Kim, I.Y. Hwang and F. Yin, Mater. Trans., 50 (2009) 537–543.Google Scholar

  • [20] A.S. Malin and M. Hatherly, Met. Sci., 13 (1979) 463–472.Google Scholar

  • [21] J.C. Sanchez, L.E. Murr and K.P. Staudhammer, Acta Mater., 45 (1997) 3223–3235.Google Scholar

About the article

Received: 2015-02-10

Accepted: 2015-07-09

Published Online: 2016-07-27

Published in Print: 2016-08-01


Funding: This work was supported by the Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (No. 267212).


Citation Information: High Temperature Materials and Processes, ISSN (Online) 2191-0324, ISSN (Print) 0334-6455, DOI: https://doi.org/10.1515/htmp-2015-0039.

Export Citation

©2017 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in