Jump to ContentJump to Main Navigation
Show Summary Details
More options …

High Temperature Materials and Processes

Editor-in-Chief: Fukuyama, Hiroyuki

Editorial Board: Waseda, Yoshio / Fecht, Hans-Jörg / Reddy, Ramana G. / Manna, Indranil / Nakajima, Hideo / Nakamura, Takashi / Okabe, Toru / Ostrovski, Oleg / Pericleous, Koulis / Seetharaman, Seshadri / Straumal, Boris / Suzuki, Shigeru / Tanaka, Toshihiro / Terzieff, Peter / Uda, Satoshi / Urban, Knut / Baron, Michel / Besterci, Michael / Byakova, Alexandra V. / Gao, Wei / Glaeser, Andreas / Gzesik, Z. / Hosson, Jeff / Masanori, Iwase / Jacob, Kallarackel Thomas / Kipouros, Georges / Kuznezov, Fedor


IMPACT FACTOR 2018: 0.427
5-year IMPACT FACTOR: 0.471

CiteScore 2018: 0.58

SCImago Journal Rank (SJR) 2018: 0.231
Source Normalized Impact per Paper (SNIP) 2018: 0.377

Open Access
Online
ISSN
2191-0324
See all formats and pricing
More options …
Ahead of print

Issues

Kinetics and Mechanism of Phosphorus Removal from Silicon in Vacuum Induction Refining

Jafar Safarian / Merete Tangstad
Published Online: 2012-01-20 | DOI: https://doi.org/10.1515/htmp-2011-0143

Abstract

Vacuum induction refining is a process that can be applied to remove phosphorus from molten silicon for the production of solar grade silicon. Pure silicon was doped by phosphorus to make molten silicon containing around 17 ppmw phosphorus. The kinetics of phosphorus removal from this silicon was studied at 0.5 Pa through the application of vacuum induction refining. It was observed that vacuum removal of phosphorus occurs through a first-order reaction. The rate constants of phosphorus evaporation were determined as 2.28 × 10-6 m/s and 4.93 × 10-6 m/s at 1500 °C and 1600 °C, respectively. Moreover, an apparent activation energy 213.1 kJ/mol for phosphorus evaporation from molten silicon was calculated. It was found that mass transfer of phosphorus in the melt is not rate limiting in the inductively stirred silicon melt. The vacuum removal of phosphorus is mix-controlled by chemical reaction and gas phase mass transfer. Under medium vacuum conditions, the mass transfer in the gas phase is more rate-limiting than the chemical reaction at higher refining temperatures.

Keywords.: Silicon; phosphorus; kinetics; mechanism; vacuum induction refining

About the article

Received: 2011-06-04

Accepted: 2011-12-14

Published Online: 2012-01-20

Published in Print: 2012-01-01


Citation Information: High Temp. Mater. Proc., Pages -–-, ISSN (Online) 2191-0324, ISSN (Print) 0334-6455, DOI: https://doi.org/10.1515/htmp-2011-0143.

Export Citation

Comments (0)

Please log in or register to comment.
Log in