Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Human Kinetics

The Journal of Academy of Physical Education in Katowice

4 Issues per year

IMPACT FACTOR 2016: 0.798
5-year IMPACT FACTOR: 1.252

CiteScore 2016: 1.16

SCImago Journal Rank (SJR) 2016: 0.483
Source Normalized Impact per Paper (SNIP) 2016: 0.792

Open Access
See all formats and pricing
More options …
Volume 36, Issue 1 (Mar 2013)


Cardiorespiratory Fitness and Motor Skills in Relation to Cognition and Academic Performance in Children – A Review

Eero A. Haapala
  • Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Campus of Kuopio, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-13 | DOI: https://doi.org/10.2478/hukin-2013-0006

Different elements of physical fitness in children have shown a declining trend during the past few decades. Cardiorespiratory fitness and motor skills have been associated with cognition, but the magnitude of this association remains unknown. The purpose of this review is to provide an overview of the relationship of cardiorespiratory fitness and motor skills with cognitive functions and academic performance in children up to 13 years of age. Cross-sectional studies suggest that children with higher cardiorespiratory fitness have more efficient cognitive processing at the neuroelectric level, as well as larger hippocampal and basal ganglia volumes, compared to children with lower cardiorespiratory fitness. Higher cardiorespiratory fitness has been associated with better inhibitory control in tasks requiring rigorous attention allocation. Better motor skills have been related to more efficient cognitive functions including inhibitory control and working memory. Higher cardiorespiratory fitness and better motor skills have also been associated with better academic performance. Furthermore, none of the studies on cardiorespiratory fitness have revealed independent associations with cognitive functions by controlling for motor skills. Studies concerning the relationship between motor skills and cognitive functions also did not consider cardiorespiratory fitness in the analyses. The results of this review suggest that high levels of cardiorespiratory fitness and motor skills may be beneficial for cognitive development and academic performance but the evidence relies mainly on cross-sectional studies.

Keywords : physical fitness; movement skills; physical activity; children; scholastic achievement

  • Adkins D, Boychuk J, Remple M, Kleim J. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol, 2006; 101: 1776-1782PubMedGoogle Scholar

  • Bassin S, Breihan S. Relationship of performance on motor activities and reading-achievement. Percept Mot Skills, 1978; 46(3): 811-814PubMedGoogle Scholar

  • Brass M, Ullsperger M, Knoesche TR, von Cramon DY, Phillips NA. Who comes first? the role of the prefrontal and parietal cortex in cognitive control. J Cogn Neurosci, 2005; 17(9): 1367-1375CrossrefGoogle Scholar

  • Brunia CHM, van Boxtel GJM. Wait and see. Int J Psychophysiol, 2001; 43: 59-75CrossrefPubMedGoogle Scholar

  • Chaddock L, Hillman CH, Pontifex MB, Johnson C, Raine LB, Kramer AF. Childhood aerobic fitness predicts cognitive preformance one year later. J Sports Sci, 2012a; 30(5): 421-430Web of ScienceCrossrefGoogle Scholar

  • Chaddock L, Erickson K, Prakash R, Voss MW, Vanpatter M, Pontifex MB, Hillman CH, Kramer A. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol, 2012b; 89(1): 260-268PubMedWeb of ScienceCrossrefGoogle Scholar

  • Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, VanPatter M, Pontifex MB, Raine LB, Konkel A, Hillman CH, Cohen NJ, Kramer AF. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res, 2010; 1358: 172-183Web of ScienceGoogle Scholar

  • Davis CL, Cooper S. Fitness, fatness, cognition, behavior, and academic achievement among overweight children: Do cross-sectional associations correspond to exercise trial outcomes? Prev Med, 2011; 52(suppl. 1): 65-69CrossrefWeb of ScienceGoogle Scholar

  • Davis CL, Tomporowski PD, McDowell JE, Austin BP, Miller PH, Yanasak NE, Allison JD, Naglieri JA. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol, 2011b; 30(1): 91-98PubMedCrossrefWeb of ScienceGoogle Scholar

  • D'Hondt E, Deforche B, Gentier I, De Bourdeaudhuij I, Vaeyens R, Philippaerts R, Lenoir M. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. Int J Obes, 2013; 37(1): 61-67CrossrefWeb of ScienceGoogle Scholar

  • Diamond A. Executive functions. Annu Rev Psychol, 2013; 64: 135-168PubMedCrossrefGoogle Scholar

  • Dwyer T, Sallis J, Blizzard L, Lazarus R, Dean K. Relation of academic performance to physical activity and fitness in children. Ped Exerc Sci, 2001; 13(3): 225-237Google Scholar

  • Ericsson I. Motor skills, attention and academic achievements. an intervention study in school years 1-3. Brit Educ Res J, 2008; 34(3): 301-313Web of ScienceGoogle Scholar

  • Gehring WJ, Fencsik D. Functions of the medial frontal cortex in the processing of conflict and errors. J Neurosci, 2001; 21(23): 9430-9437PubMedGoogle Scholar

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error detection and compensation. Psychol Sci, 1993; 4(6): 385-390CrossrefGoogle Scholar

  • Goldstein H. Skeletal maturity and cognitive development of 12-year-old to 17-year-old males. Dev Med Child Neurol, 1987; 29(3): 348-350PubMedGoogle Scholar

  • Hannula DE, Ranganath C. The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 2009; 63(5): 592-599PubMedWeb of ScienceCrossrefGoogle Scholar

  • Hardy LL, King L, Espinel P, Cosgrove C, Bauman A. NSW schools physical activity and nutrition survey (SPANS) 2010: Full Report. Sydney, Australia: NSW Ministry of Health; 2011Google Scholar

  • Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat Rev Neurosci, 2008; 9(1): 58-65CrossrefPubMedGoogle Scholar

  • Hillman CH, Buck SM, Themanson JR, Pontifex MB, Castelli DM. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev Psychol, 2009; 45(1): 114-129CrossrefPubMedGoogle Scholar

  • Janssen I, Katzmarzyk PT, Boyce WF, Vereecken C, Mulvihill C, Roberts C, Currie C, Pickett W. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes Rev, 2005; 6(2): 123-132CrossrefPubMedGoogle Scholar

  • Kamijo K, Khan NA, Pontifex MB, Scudder MR, Drollette ES, Raine LB, Evans EM, Castelli DM, Hillman CH. The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity, 2012; 20(12): 2406-2411Web of ScienceCrossrefGoogle Scholar

  • Kamijo K, Pontifex MB, O'Leary KC, Scudder MR, Wu C, Castelli DM, Hillman CH. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev Sci, 2011; 14(5): 1046-1058Web of ScienceCrossrefPubMedGoogle Scholar

  • Livesey D, Keen J, Rouse J, White F. The relationship between measures of executive function, motor performance and externalising behaviour in 5- and 6-year-old children. Hum Mov Sci, 2006; 25: 50-64CrossrefGoogle Scholar

  • Lubans D, Morgan P, Cliff D, Barnett L, Okely A. Fundamental movement skills in children and adolescents. Review of associated health benefits. Sports Med, 2010; 40(12): 1019-1035PubMedCrossrefWeb of ScienceGoogle Scholar

  • MacDonald III AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 2000; 288(5472): 1835-1838Google Scholar

  • Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign, Ill: Human Kinetics; 2004Google Scholar

  • Martin NC, Piek JP, Hay D. DCD and ADHD: A genetic study of their shared aetiology. Hum Mov Sci, 2006; 25(1): 110-124CrossrefPubMedGoogle Scholar

  • Monti JM, Hillman CH, Cohen NJ. Aerobic fitness enhances relational memory in preadolescent children: The FITKids randomized control trial. Hippocampus, 2012; 22(9): 1876-1882CrossrefPubMedWeb of ScienceGoogle Scholar

  • Niederer I, Kriemler S, Gut J, Hartmann T, Schindler C, Barral J, Puder J. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (ballabeina): A cross-sectional and longitudinal study. BMC Pediatr, 2011; 11(11): 34CrossrefPubMedWeb of ScienceGoogle Scholar

  • Nourbakhsh P. Perceptual-motor abilities and their relationships with academic performance of fifth grade pupils in comparison with Oseretsky scale. Kinesiology, 2006; 38(1): 40-48Google Scholar

  • Pagani LS, Fitzpatrick C, Archambault I, Janosz M. School readiness and later achievement: A French Canadian replication and extension. Dev Psychol, 2010; 46(5): 984-994PubMedWeb of ScienceCrossrefGoogle Scholar

  • Pangelinan MM, Zhang G, VanMeter JW, Clark JE, Hatfield BD, Haufler AJ. Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. NeuroImage, 2011; 54(4): 3093-3100PubMedCrossrefWeb of ScienceGoogle Scholar

  • Piek JP, Dawson L, Smith LM, Gasson N. The role of early fine and gross motor development on later motor and cognitive ability. Hum Mov Sci, 2008; 27(5): 668-681PubMedCrossrefGoogle Scholar

  • Pontifex MB, Raine LB, Johnson CR, Chaddock L, Voss MW, Cohen NJ, Kramer AF, Hillman CH. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J Cogn Neurosci, 2011; 23(6): 1332-1345Web of ScienceCrossrefGoogle Scholar

  • Riethmuller AM, Jones RA, Okely AD. Efficacy of interventions to improve motor development in young children: A systematic review. Pediatrics, 2009; 124(4): 1191-1191Web of ScienceGoogle Scholar

  • Roebers CM, Kauer M. Motor and cognitive control in a normative sample of 7-year-olds. Dev Sci, 2009; 12: 175-181CrossrefWeb of ScienceGoogle Scholar

  • Rowland T. Evolution of maximal oxygen uptake in children. Med Sport Sci, 2007; 50: 200-209PubMedCrossrefGoogle Scholar

  • Rutter M. Genes and behavior nature/nurture interplay explained. Malden, MA, USA: Blackwell Pub; 2006Google Scholar

  • Stigman S, Rintala P, Kukkonen-Harjula K, Kujala U, Rinne M, Fogelholm M. Eight-year-old children with high cardiorespiratory fitness have lower overall and abdominal fatness. Int J Pediatr Obes, 2009; 4(2): 98-105PubMedCrossrefGoogle Scholar

  • Timmons BW, Leblanc AG, Carson V, Gorber SC, Dillman C, Janssen I, Kho ME, Spence JC, Stearns JA, Tremblay MS. Systematic review of physical activity and health in the early years (aged 0-4 years). Appl Physiol Nutr Metab, 2012; 37(4): 773-792PubMedGoogle Scholar

  • Tomkinson GR, Olds TM. Secular changes in pediatric aerobic fitness test performance: The global picture. Med Sport Sci, 2007; 50: 46-66CrossrefPubMedGoogle Scholar

  • Uhrich TA, Swalm R. A pilot study of a possible effect from a motor task on reading performance. Percept Mot Skills, 2007; 104(3): 1035-1041PubMedGoogle Scholar

  • Van Dusen DP, Kelder SH, Kohl HW, Ranjit N, Perry CL. Associations of physical fitness and academic performance among schoolchildren. J School Health, 2011; 81(12): 733-740CrossrefWeb of ScienceGoogle Scholar

  • Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, Androutsos O, Kovács E, Bringolf-Ister B, Brug J, De Bourdeaudhuij I. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the ENERGY-project. Int J Behav Nutr Phys Act, 2012; 9: 34CrossrefWeb of ScienceGoogle Scholar

  • Voss M, Chaddock L, Kim J, Vanpatter M, Pontifex MB, Raine LB, Cohen NJ, Hillman CH, Kramer AF. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience, 2011; 199: 166-176CrossrefWeb of ScienceGoogle Scholar

  • Wassenberg R, Feron F, Kessels A, Hendriksen J, Kalff A, Kroes M, Hurks PP, Beeren M, Jolles J, Vles J. Relation between cognitive and motor performance in 5-to 6-year-old children: Results from a large-scale cross-sectional study. Child Dev, 2005; 76(5): 1092-1103CrossrefPubMedGoogle Scholar

  • Weerts T, Lang P. The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV). Biol Psychol, 1973; 1(1): 1-19PubMedCrossrefGoogle Scholar

  • Welk GJ, Jackson AW, James R, Morrow J, Haskell WH, Meredith MD, Cooper KH. The association of health-related fitness with indicators of academic performance in Texas schools. Res Q Exerc Sport, 2010; 81: 16-23CrossrefWeb of ScienceGoogle Scholar

  • Wittberg R, Cottrell LA, Davis CL, Northrup KL. Aerobic fitness thresholds associated with fifth grade academic achievement. Am J Health Educ, 2010; 41(5): 284-291CrossrefGoogle Scholar

About the article

Published Online: 2013-04-13

Published in Print: 2013-03-01

Citation Information: Journal of Human Kinetics, ISSN (Online) 1899-7562, ISSN (Print) 1640-5544, DOI: https://doi.org/10.2478/hukin-2013-0006.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hermundur Sigmundsson, Kjellrun Englund, and Monika Haga
SAGE Open, 2017, Volume 7, Number 2, Page 215824401771276
David Kahan and Thomas L. McKenzie
Journal of School Health, 2017, Volume 87, Number 6, Page 448
Kristin Wick, Claudia S. Leeger-Aschmann, Nico D. Monn, Thomas Radtke, Laura V. Ott, Cornelia E. Rebholz, Sergio Cruz, Natalie Gerber, Einat A. Schmutz, Jardena J. Puder, Simone Munsch, Tanja H. Kakebeeke, Oskar G. Jenni, Urs Granacher, and Susi Kriemler
Sports Medicine, 2017
Tânia Oliveira, Andreia Pizarro, Manuela Costa, Luís Fernandes, Gustavo Silva, Jorge Mota, and José Carlos Ribeiro
Annals of Human Biology, 2017, Volume 44, Number 4, Page 309
Eero A. Haapala, Anna-Maija Poikkeus, Katriina Kukkonen-Harjula, Tuomo Tompuri, Niina Lintu, Juuso Väistö, Paavo H. T. Leppänen, David E. Laaksonen, Virpi Lindi, Timo A. Lakka, and Fiona Gillison
PLoS ONE, 2014, Volume 9, Number 9, Page e107031
Katrine Nyvoll Aadland, Vegard Fusche Moe, Eivind Aadland, Sigmund Alfred Anderssen, Geir Kåre Resaland, and Yngvar Ommundsen
Mental Health and Physical Activity, 2017, Volume 12, Page 10
Cristina Cadenas-Sanchez, Jeremy Vanhelst, Jonatan R. Ruiz, Ruth Castillo-Gualda, Lars Libuda, Idoia Labayen, Pilar De Miguel-Etayo, Ascensión Marcos, Eszter Molnár, Andrés Catena, Luis A. Moreno, Michael Sjöström, Frederic Gottrand, Kurt Widhalm, and Francisco B. Ortega
Journal of Science and Medicine in Sport, 2017, Volume 20, Number 4, Page 373
Marianna Alesi, Antonino Bianco, Giorgio Luppina, Antonio Palma, and Annamaria Pepi
Perceptual and Motor Skills, 2016, Volume 122, Number 1, Page 27
Osama Abdelkarim, Achraf Ammar, Hamdi Chtourou, Matthias Wagner, Elke Knisel, Anita Hökelmann, and Klaus Bös
Alexandria Journal of Medicine, 2017
C. C. A. Santana, L. B. Azevedo, M. T. Cattuzzo, J. O. Hill, L. P. Andrade, and W. L. Prado
Scandinavian Journal of Medicine & Science in Sports, 2017, Volume 27, Number 6, Page 579
Sima Zach, Ella Shoval, and Ronnie Lidor
Journal of Curriculum Studies, 2017, Volume 49, Number 5, Page 703
Vivien Suchert, Reiner Hanewinkel, and Barbara Isensee
Journal of School Health, 2016, Volume 86, Number 10, Page 734
Eero A. Haapala, Aino-Maija Eloranta, Taisa Venäläinen, Henna Jalkanen, Anna-Maija Poikkeus, Timo Ahonen, Virpi Lindi, and Timo A. Lakka
European Journal of Nutrition, 2016
Alberto Ruiz-Ariza, Alberto Grao-Cruces, Nuno Eduardo Marques de Loureiro, and Emilio J. Martínez-López
International Review of Sport and Exercise Psychology, 2017, Volume 10, Number 1, Page 108
Luís Lopes, Rute Santos, Jorge Mota, Beatriz Pereira, and Vítor Lopes
Journal of Sports Sciences, 2017, Volume 35, Number 5, Page 463
Medicine & Science in Sports & Exercise, 2016, Volume 48, Number 5, Page 839
Lisa M. Barnett, Samuel K. Lai, Sanne L. C. Veldman, Louise L. Hardy, Dylan P. Cliff, Philip J. Morgan, Avigdor Zask, David R. Lubans, Sarah P. Shultz, Nicola D. Ridgers, Elaine Rush, Helen L. Brown, and Anthony D. Okely
Sports Medicine, 2016, Volume 46, Number 11, Page 1663
Medicine & Science in Sports & Exercise, 2015, Volume 47, Number 12, Page 2542
Alberto Ruiz-Ariza, Jonatan R. Ruiz, Manuel de la Torre-Cruz, Pedro Latorre-Román, and Emilio J. Martínez-López
Revista Latinoamericana de Psicología, 2016, Volume 48, Number 1, Page 42
Marianna Alesi, Antonino Bianco, Johnny Padulo, Giorgio Luppina, Marco Petrucci, Antonio Paoli, Antonio Palma, and Annamaria Pepi
Frontiers in Psychology, 2015, Volume 6
Medicine & Science in Sports & Exercise, 2015, Volume 47, Number 10, Page 2166
Leah E. Robinson, David F. Stodden, Lisa M. Barnett, Vitor P. Lopes, Samuel W. Logan, Luis Paulo Rodrigues, and Eva D’Hondt
Sports Medicine, 2015, Volume 45, Number 9, Page 1273
Irene Esteban-Cornejo, Carlos Ma Tejero-González, David Martinez-Gomez, Juan del-Campo, Ana González-Galo, Carmen Padilla-Moledo, James F. Sallis, and Oscar L. Veiga
The Journal of Pediatrics, 2014, Volume 165, Number 2, Page 306
Medicine & Science in Sports & Exercise, 2014, Volume 46, Number 5, Page 1016
Coral Torrijos-Niño, Vicente Martínez-Vizcaíno, María Jesús Pardo-Guijarro, Jorge Cañete García-Prieto, Natalia María Arias-Palencia, and Mairena Sánchez-López
The Journal of Pediatrics, 2014, Volume 165, Number 1, Page 104

Comments (0)

Please log in or register to comment.
Log in