Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Human Movement

The Journal of University School of Physical Education, Wroclaw; University School of Physical Education, Krakow

4 Issues per year

CiteScore 2016: 0.41

SCImago Journal Rank (SJR) 2016: 0.208
Source Normalized Impact per Paper (SNIP) 2016: 0.230

Open Access
See all formats and pricing
More options …
Volume 13, Issue 4 (Nov 2012)


Interleukin-6 As An Adipokine And Myokine: The Regulatory Role Of Cytokine In Adipose Tissue And Skeletal Muscle Metabolism

Prof. Grażyna Lutosławska
  • Corresponding author
  • Department of Biochemistry, Jozef Piłsudski University of Physical Education, 00-968 Warszawa 45, Box 55
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-26 | DOI: https://doi.org/10.2478/v10038-012-0045-y


Purpose. Interleukin-6 (IL-6) belongs to the IL-6-type cytokine family, which, besides IL-6, comprises of IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT) and cardiotrophin-like cytokine (CLC). The metabolic effects of IL-6 differ markedly depending on the nature of the target cell with positive action on nerve cells’ differentiation and hematopoesis, but negative in the etiology of autoimmune disease such as rheumatoid arthritis. In a target cell, IL-6 can simultaneously generate functionally distinct or sometimes contradictory signals depending on the in vivo environment, and the final physiological effect is a consequence of the orchestration of the diverse signals. Thus, its physiological effects are characterized by pleiotropy and redundancy. At present, it has been well documented that in obese individuals, IL-6, as an adipokine secreted into circulation by adipose tissue in proportion to body fat content and an elevated level of the cytokine in the plasma, adversely affects insulin signaling and glucose disposal in skeletal muscles and liver. Moreover, several lines of evidence indicated that IL-6 is a myokine synthesized in skeletal muscle and secreted into the bloodstream in response to exercise. In this way muscular work has a potential to stimulate adipose tissue lipolysis and provides an energy to working muscle. Furthermore, muscle-originated IL-6 acts locally, positively affecting intramuscular fat utilization. It has also been postulated that IL-6 is inevitable for satellite cell stimulation and muscle hypertrophy and repair.

Keywords: interleukin-6; adipose tissue; skeletal muscle; exercise

  • 1. Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Muller-Newen G., Schaper F., Principles of interleukin (IL)-6-type cytokine signaling and its regulation. BiochemJ, 2003, 374, 1-20, doi: 10.1042/BJ2003.0407.CrossrefGoogle Scholar

  • 2. Simpson R.J., Hammacher A., Smith D.K., Matthews J.M., Ward L., Interleukin-6: Structure-function relationship. Protein Sci, 1997, 6, 929-955, doi: 10.1002/pro.5560060501.CrossrefGoogle Scholar

  • 3. Kishimoto T., Akira S., Narazaki M., Taga T., Interleukin- 6 family of cytokines and gp130. Blood, 1995, 86, 1243-1254.Google Scholar

  • 4. Kimamura D., Ishihara K., Hirano T., IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol, 2003, 149, 1-38, doi: 10.1007/s10254-003-0012-2.CrossrefGoogle Scholar

  • 5. Kishimoto T., Hibi M., Murakami M., Narazaki M., Saito M., Taga T., The molecular biology of interleukin-6 and its receptor. Ciba Found Symp, 1992, 167, 5-16.Google Scholar

  • 6. Fonseca-Alaniz M.H., Takada J., Alonso-Vale M.I., Lima F.B., Adipose tissue as an endocrine organ: from theory to practice. J Pediatr, 2007, 83 (5 Suppl.), S192-S203, doi: 10.2223/JPED.1709.CrossrefGoogle Scholar

  • 7. Deng Y., Scherer P., Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann NY Acad Sci, 2010,1212, E1-E19, doi: 10.1111/j.1749-6632.2010.05875.x.CrossrefGoogle Scholar

  • 8. Mohamed-Ali V., Goodrick S., Rawesh A., Katz D.R., Miles J.M., Yudkin J.S., Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor- , in vivo. J Clin Endocrinol Metab, 1997, 82, 4196-4200, doi: 10.1210/jc.82.12.4196.CrossrefGoogle Scholar

  • 9. Vozarova B., Weyer Ch., Hanson K., Tataranni P.A., Bogardus C., Pratley R.E., Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 2001, 9, 414-417, doi: 10.1038/oby.2001.54.CrossrefPubMedGoogle Scholar

  • 10. Maachi M., Pieroni L., Bruckert E., Jardel C., Fellahi S., Hainque B., Systemic low-grade inflammation is related to both circulating and adipose tissue TNF- , leptin and IL-6 levels in obese women. Int J Obes, 2004, 28, 993-997, doi: 10.1038/sj.ijo.0802718.CrossrefGoogle Scholar

  • 11. C artier A., Lemieux I., Almeras N., Tremblay A., Bergeron J., Despres J.-P., Visceral obesity and plasma glucoseinsulin homeostasis: contribution on interleukin and tumor necrosis factor- in men. J Clin Endocrinol Metab, 2008, 93, 1931-1938, doi: 10.12/jc.2007-2191.Google Scholar

  • 12. B astrad J.P., Jardel C., Bruckert E., Blondy P., Capeau J., Laville M., Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab, 2000, 85, 3338- 3342, doi: 10.1210.jc.85.9.3338.Google Scholar

  • 13. R yan A.S., Nicklas B.J., Reduction in plasma cytokine levels with weight loss improves insulin sensitivity in overweight and obese postmenopausal women. Diabetes Care, 2004, 27, 1699-1705, doi: 10.2337/diacare.27.7.1699.CrossrefGoogle Scholar

  • 14. Moschen A.R., Molnar C., Geiger S., Graziadel I., Ebenbichler C.F., Weiss H., Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumor necrosis factor alpha expression. Gut, 2010, 59, 1259-1264, doi: gut.2010.214577v1.Google Scholar

  • 15. Oberhauser F., Schulte D.M., Faust M., Gudelhofer H., Hahn M., Muller N., Weight loss due to very low calorie diet differentially affects insulin sensitivity and interleukin- 6 serum levels in non-diabetic obese human subjects. Horm Metab Res, 2012, 44, 465-470, doi: 10.1055/s-0032. 13066341.CrossrefGoogle Scholar

  • 16. Wallenius V., Wallenius K., Aren B., Rudling M., Carlsten H., Dickson S.L., Interleukin-6-deficient mice develop mature-onset obesity. Nat Med, 2002, 8, 75-79, doi: 10.1038/nm 0102-75.CrossrefGoogle Scholar

  • 17. Tsigos C., Papanicolaou D.A., Kyrou I., Defensor R., Mitsiadis C.S., Chrousos G.P., Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab, 1997, 82, 4167-4170, doi: 10.1012/ jc.82.124167CrossrefGoogle Scholar

  • 18. Fernandez-Real J.M., Vayreda M., Richart C., Gutierrez C., Broch M., Vendrell J., Rickart W., Circulating interleukin- 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin EndocrinolMetab, 2001, 86, 1154-1159, doi: 10.1012/jc.86.3.1154. CrossrefGoogle Scholar

  • 19. Senn J.J., Klover P.J., Nowak I.A., Mooney R.A., Interleukin- 6 induces cellular insulin resistance in hepatocytes. Diabetes, 2002, 51, 3391-3399, doi: 10.2337.51.12.3391.Google Scholar

  • 20. Klover P.J., Zimmers T.A., Koniaris L.G., Mooney R.A., Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes, 2003, 52, 2784-2789, doi: 10.2337/diabetes.52.11.2784.CrossrefGoogle Scholar

  • 21. Rotter V., Nagaev I., Smith U., Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 2003, 278, 45777-45784, doi: 10.1074/jbc.M301977200.CrossrefGoogle Scholar

  • 22. Kern P.A., Ranganathan S., Li C., Wood L., Ranganathan G., Adipose tissue tumor necrosis factor and interleukin- 6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab, 2001, 280, E745-R751. Available from: URL: http://www.ajpendo.orgGoogle Scholar

  • 23. Rotter Sopasakis V., Larsson B.M., Johansson A., Holmang A., Smith U., Short-term infusion of interleukin-6 does not induce insulin resistance in vivo or impair insulin signaling in rats. Diabetologia, 2004, 47, 1879-1887, doi: 10.1007/s00125-004-1554y.CrossrefGoogle Scholar

  • 24. Franckhauser S., Elias I., Rotter Sopasakis V., Ferre T., Nagaev I., Andersson C.X., Overexpression of IL-6 leads to hyperinsulinaemia, liver inflammation and reduced body weight. Diabetologia, 2008, 51, 1306-1316, doi:10.1007/s00125-008-0998-8.CrossrefGoogle Scholar

  • 25. Carey A.L., Syeinberg G.R., Macaulay S.L., Thomas W.G., Holmes A.G., Ramm G., Interleukin-6 increases insulinstimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes Care, 2006, 55, 2688-2697, doi: 10.2337/db05-1404.CrossrefGoogle Scholar

  • 26. Holmes A.G., Mesa J.L., Neill B.A., Chung J., Carey A.L., Steinberg G.R., Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPAR and UCP2 expression in rats. J Endocrinol, 2008, 198, 367-374, doi: 10,1677/JOE-08-0113.Google Scholar

  • 27. Ruge T., Lockton J.A., Renstrom F., Lystig T., Sukonina V., Svensson M.K., Eriksson J.W., Acute hyperinsulinemia raises plasma interleukin-6 in both nondiabetic and type 2 diabetes mellitus subjects, and this effect is inversely associated with body mass index. Metabolism, 2009, 58, 860-866.Google Scholar

  • 28. Ruotsalainen E., Stancakova A., Vauhkonen I., Salmienniemi U., Pihlajamaki J., Punnonen K., Changes in cytokine levels during acute hyperinsulinemia in offspring of type 2 diabetic subjects. Atherosclerosis, 2010, 210, 536-541.Google Scholar

  • 29. Lyngso D., Simonsen L., Bulow J., Metabolic effects of interleukin-6 in human splanchnic and adipose tissue. J Physiol, 2004, 543, 379-386, doi: 10.1113/lphysiol.2002.021022.CrossrefGoogle Scholar

  • 30. van Hall G., Steensberg A., Sachcetti M., Fischer Ch., Keller Ch., Schjerling P., Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab, 2003, 88, 3005-3010, doi: 10.1012/jc.2002.-021687.CrossrefGoogle Scholar

  • 31. Petersen W.W., Carey A.L., Sacchetti M., Steinberg G.R., Macaulay S.L., Febrraio M.A., Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture. Am J Physiol Endocrinol Metab, 2004, 288, E155-E162, doi: 10.1152/ajpendo.00257.2004.CrossrefGoogle Scholar

  • 32. Ji Ch., Chen X., Gao Ch., Jiao L., Wang J., Xu G., IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes. J Bioenerg Biomembr, 2011, 43, 367-375, doi: 10.1007/s10863-011-9361-8.CrossrefGoogle Scholar

  • 33. Hiscock N., Fischer C.P., Sacchetti M., van Hall G., Febrraio M.A., Pedersen B.K., Recombinant human interleukin- 6 infusion during low-intensity exercise does not enhance whole body lipolysis or fat oxidation in humans. Am J Physiol Endocrinol Metab, 2005, 289, E2-E7, doi: 10.1152/ajpendo.00274.2004.CrossrefGoogle Scholar

  • 34. Rotter Sopasakis V., Sandquvist M., Gustafson B., Hammerstedt A., Schmelz M., Yang X., High local concentrations and effects on a differentiation implicate interleukin-6 as a paracrine regulator. Obes Res, 2004, 12, 454-461, doi: 10.1038/oby.2004.51.CrossrefGoogle Scholar

  • 35. Engeli S., Feldpausch M., Gorzelniak K., Hartwig F., Heintze U., Janke J., Association between adiponectin and mediators of inflammation in obese women. Diabetes, 2003, 52, 942-947, doi: 10.2337.52.4.942.Google Scholar

  • 36. Sopasakis V.R., Nagaev I., Smith U., Cytokine release from adipose tissue of nonobese individuals. Int J Obes, 2005, 29, 1144-1147, doi: 10.1038.sj.ijo.0803002.Google Scholar

  • 37. Kralisch S., Klein J., Lossner U., Bluher M., Paschke R., Stumvoll M., Fasshauer M., Interleukin is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab, 2005, 289, E586-E590, doi: 10.1152/ajpendo.00090.2005.CrossrefGoogle Scholar

  • 38. Vazquez-Vale M.E.F., Torres N., Tovar A.R., White adipose tissue as endocrine organ and its role in obesity. Arch MedRes, 2008, 39, 715-728, doi: 10.1016/j.arcmed.2008.09.005.CrossrefGoogle Scholar

  • 39. Brandt C., Jakobsen A.H., Adser H., Olssen J., Iversen N., Kristensen J.M., IL-6 regulates exercise and training adaptation in subcutaneous adipose tissue in mice. ActaPhysiol (Oxf), 2012, 205, 224-235, doi: 10.1111/j.1748-1716.2011.02.373.x.CrossrefGoogle Scholar

  • 40. Mohamed-Ali V., Flower L., Sethi J., Hotamisligil G., Gray R., Humpheries S.E., -adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies.J Clin Endocrinol Metab, 2001, 86, 5864-5869, doi: 10. 1210/jc.86.12.5864.CrossrefGoogle Scholar

  • 41. Vicennati V., Vottero A., Friedman C., Papanicolaou D.A., Hormonal regulation of IL-6 production in human adipocytes. Int J Obes, 2002, 26, 905-911, doi: 10.1038/sj.ijo.0002035.CrossrefGoogle Scholar

  • 42. Fasshauer M., Klein J., Lossner U., Pasche R., Interleukin (IL)-6 mRNA expression is simulated by insulin, isoproterenol, tumor necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes. Horm Metab Res, 2003, 35, 147-152, doi: 10.1055/S-2003-39075.CrossrefGoogle Scholar

  • 43. Keller P., Keller Ch., Robinson L.E., Pedersen B.K., Epinephrine infusion increases interleukin-6 gene expression and systemic levels in humans. J Appl Physiol, 2004, 97, 1309-1312, doi: 10.1152/japplphysiol.00284.2004.CrossrefGoogle Scholar

  • 44. Borcherding D.C., Hugo E.R., Idelman G., De Silva A., Richtand N.W., Loftus J., Dopamine receptors in human adipocytes: expression and functions. PloS One, 2011, 6, e25537. Available from: URL: http://www.plos.orgCrossrefGoogle Scholar

  • 45. Roth S.M., Schrager M.A., Lee M.R., Lee M.R., Metter E.J., Hurley B.F., Interleukin-6 (IL-6) genotype is associated with fat-free mass in men but not women. J Gerontol ABiol Sci Med Sci, 2003, 58, B1085-1088, doi: 10.1093/ gerona/58.12.B1085.CrossrefGoogle Scholar

  • 46. Calder P.C., Albers R., Antoine J.M., Blum S., Bourdet-Sicard R., Ferns G.A., Inflammatory disease processes and interactions with nutrition. Br J Nutr, 2009, 101 (Suppl. 1), S1-S45.CrossrefGoogle Scholar

  • 47. Janssen I., Ross R., Linking age-related changes in skeletal muscle mass and composition with metabolism and disease. J Nutr Health Aging, 2005, 9, 408-419.Google Scholar

  • 48. Pedersen B.K., Muscles and their myokines. J Exp Biol, 2011, 214, 337-346, doi: 10.1242/jeb.048074.CrossrefGoogle Scholar

  • 49. Pedersen B.K., Steensberg A., Fischer C., Keller P., Plomgaard P., Wolsk-Petersen E., The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? ProcNutr Soc, 2004, 63, 263-267, doi: 10.1079/PNS2004338.CrossrefGoogle Scholar

  • 50. Ostrowski K., Hermann C., Bangash A., Schjerling P., Nielsen J.N., Pedersen B.K., A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol, 1998, 513, 889-894, doi: 10.111/j.1469-7793.1998.889ba.x.Google Scholar

  • 51. Ostrowski K., Rohde T., Zacho M., Asp S., Pedersen B.K., Evidence that interleukin-6 is produced in human skeletal muscle during prolonged exercise. J Physiol, 1998, 508, 949-953, doi: 10.111/j.1469-7793.1998.949bp.x.Google Scholar

  • 52. Jonsdottir I.H., Schjerling P., Ostrowski K., Asp S., Richter E.A., Pedersen B.K., Muscle contractions induce interleukin- 6 mRNA production in skeletal muscle. J Physiol, 2000, 528, 157-163, doi: 10.1111/j.1469-7793.2000.00157.x.CrossrefGoogle Scholar

  • 53. Starkie R.L., Rolland J., Angus D.J., Andersen M.J., Febrraio M., Circulating monocytes are not the source of elevation in plasma IL-6 and TNF- concentrations after prolonged exercise. Am J Physiol Cell Physiol, 2001, 280, C769-C774. Available from: URL: http://www.ajpcell.org.Google Scholar

  • 54. Hiscock N., Chan M.H., Bisucci T., Darby I.A., Febrraio M.A., Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber specificity. FASEB J, 2004, 18, 992-994, doi: 10.1096/fj.03-1259fje.CrossrefGoogle Scholar

  • 55. Keller Ch., Steensberg A., Hansen A.K., Fischer Ch., Plomgaard P., Pedersen B.K., Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol, 2005, 90, 2075-2079, doi:10.1152/japplphysiol.00590.2005.CrossrefGoogle Scholar

  • 56. Steensberg A., Febrraio M.A., Osada T., Schjerling P., van Hall G., Saltin B., Interleukin-6 production in contracting skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol, 2001, 537, 633-639, doi: 10.1111/j.1469-7793.2001.00633.x.CrossrefGoogle Scholar

  • 57. Starkie R.L., Arkinstall M.J., Koukoulas I., Hawley J.A., Febrraio M.A., Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol, 2001,533,585-591, doi: 10.1111/j.1469-7793.2001.0585a.x.CrossrefGoogle Scholar

  • 58. Nieman D.C., Davis J.M., Henson D.A., Walberg-Rankin J., Shute M., Dumke C.L. et al., Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol, 2003, 94, 1917-1925, doi: 10.1152/jaapplphysiol.01130.CrossrefGoogle Scholar

  • 59. Nieman D.C., Davis J.M., Henson D.A., Gross S.J., Dumke C.L., Utter A.C., Muscle cytokine mRNA changes after 2.5 h cycling: influence of carbohydrate. Med Sci SportsExerc, 2005, 37, 1283-1290.Google Scholar

  • 60. Robson-Ansley P., Barwood M., Eglin C., Ansley L., The effect of carbohydrate ingestion on the interleukin-6 response to a 90-minute run time trial. Int J Sports PhysiolPerform, 2009, 4, 186-194.Google Scholar

  • 61. Langberg H., Olesen J.I., Gemmer C., Kjaer M., Substantial elevation of interleukin-6 concentration in peritendious tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol, 2002, 542, 985-990, doi: 10.1113/jphysiol.2002.019141.CrossrefGoogle Scholar

  • 62. Fischer Ch.P., Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev, 2006, 12, 6-33.Google Scholar

  • 63. Febbraio M.A., Pedersen B.K., Muscle-derived interleukin- 6: mechanism for activation and possible biological roles. FASEB J, 2002, 16, 1335-1347, doi: 10.1096/fj.01- 0876rev.CrossrefGoogle Scholar

  • 64. Holmes A.G., Watt M.J., Febbraio M.A., Suppressing lipolysis increases interleukin-6 at rest and during prolonged exercise in humans. J Appl Physiol, 2004, 97, 689-696, doi: 10.1152/japplphysiol.00195.2004.CrossrefGoogle Scholar

  • 65. Ives S.J., Blegen M., Coughlin M.A., Redmond J., Matthews Y., Paolone V., Salivary estradiol, interleukin-6 production, and the relationship to substrate metabolism during exercise in females. Eur J Appl Physiol, 2011, 111, 1649-1658, doi: 10.1007/s00421-010-1789-8.CrossrefGoogle Scholar

  • 66. Bruce C.R., Dyck D.J., Cytokines regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor- . Am J Physiol Endocrinol Metab, 2004, 287, E616-E621, doi: 10.1152/ajpendo.00150.2004.CrossrefGoogle Scholar

  • 67. Chabowski A., Zmijewska M., Gorski J, Bonen A., Kaminski K., Kozuch M., IL-6 deficiency increases fatty amid transporters and intramuscular lipid content in red but not white skeletal muscle. J Physiol Pharmacol, 2008, 59 (Suppl. 7), 105-117. Available from: URL: http://www.jpp.krakow.plGoogle Scholar

  • 68. Wolsk E., Mygind H., Grondahl T.S., Pedersen B.K., van Hall G., IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab, 2010, 299, E832-E840, doi: 10.1152/ajpendo.00328.2010.CrossrefGoogle Scholar

  • 69. Febbraio M.A., Hiscock N., Sacchetti M., Fischer Ch.P., Pedersen B.K., Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes, 2004, 53, 1643-1648, doi: 10.2337/diabetes.53.7.1643.CrossrefGoogle Scholar

  • 70. Andreozzi F., Laratta E., Cardellini M., Marini M.A., Lauro R., Hribal M.L., Plasma interleukin-6 levels are independently associated with insulin secretion in a cohort of Italian-Caucasian nondiabetic subjects. Diabetes, 2006, 55, 2021-2024, doi: 10.2337/db06-0063.CrossrefGoogle Scholar

  • 71. Glund S., Deshmukh A., Long Y.Ch., Moller T., Koistinen H.A., Caidahl K., Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, 2007, 56, 1630-1637, doi: 10.2337/db06-1733.CrossrefGoogle Scholar

  • 72. Geiger P.C., Hancock Ch., Wright D.C., Han D.-H., Holloszy J.O., IL-6 increases muscle insulin sensitivity only at supraphysiological levels. Am J Physiol Endocrinol Metab, 2007, 292, E1842-E1846, doi:10.1152/ajpendo.00701.2006.CrossrefGoogle Scholar

  • 73. Holmes A.G., Mesa J.L., Neill B.A., Chung J., Carey A.L., Steinberg G.R., Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPAR and UPC2 expression in rats. J Endocrinol, 2008, 198, 367-374, doi: 10.1677/JOE-08-0113.CrossrefGoogle Scholar

  • 74. Kelly M., Keller Ch., Avilucea P.R., Keller P., Luo Z., Xiang X., AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem BiophysRes Commun, 2004, 320, 449-454, doi: 10.1016/j.bbrc.2004.05.188CrossrefGoogle Scholar

  • 75. Ruderman N.B., Keller Ch., Richard A.-M., Saha A.S., Luo Z., Xiang X., Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention in the metabolic syndrome. Diabetes, 2006, 55 (Suppl. 2), S48-S54, doi: 10.2337/db06-S007.CrossrefGoogle Scholar

  • 76. Petersen A.M.W., Pedersen B.K., The role of IL-6 in mediating the anti-inflammatory effects of exercise. J PhysiolPharmacol, 2006, 57 (Suppl. 10), 43-51. Available from: URL: http://www.jpp.krakow.plGoogle Scholar

  • 77. Trayhurn P., Drevon C.A., Eckel J., Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk. Acta PhysiolBiochem, 2011, 117, 47-56, doi: 10.3109/13813455.2010.535835.CrossrefGoogle Scholar

  • 78. Ispirlidis I., Fatouros I.G., Jamurtas A.Z., Nikolaidis M.G., Michailidis I., Douroudos I., Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med, 2008, 18, 423-431.Google Scholar

  • 79. Robson-Ansley P., Barwood M., Canavan J., Hack S., Eglin C., Davey S., Hewitt J., The effect of repeated endurance exercise on IL-6 and sIL-6R and their relationship with sensations of fatigue at rest. Cytokine, 2009, 45, 111-116.Google Scholar

  • 80. Fischer Ch., Plomgaard P., Hansen A.K., Pilegaard H., Saltin B., Pedersen B.K., Endurance training reduced the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab, 2004, 287, E1189-E1194, doi: 10.1152/ajpendo.00206.2004.CrossrefGoogle Scholar

  • 81. Croft L., Bartlett J.D., MacLaren D.P., Reilly T., Evans L., Mattey D.L., High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 response to acute exercise. Appl Physiol Nutr Metab, 2009, 34, 1098- 1107, doi: 10.1139/H09-117.CrossrefGoogle Scholar

  • 82. Phillips M.D., Flynn M.G., McFarlin B.K., Stewart L.K., Timmerman K.L., Resistance training at eigth-repetition maximum reduces the inflammatory milieu in elderly men. Med Sci Sports Exerc, 2010, 42, 314-325, doi: 10.1249/MSS .0b013e3181b11ab7.CrossrefGoogle Scholar

  • 83. Thompson D., Markovitch D., Betts J.A., Mazzatti D., Turner J., Tyrrell R.M., Time course of changes in inflammatory markers during a 6-mo exercise intervention in sedentary middle-aged man: a randomized-controlled trial. J Appl Physiol, 2010, 108, 769-779, doi: 10.1152/ japplphysiol.00822.2009.CrossrefGoogle Scholar

  • 84. Libardi C.A., De Souza G.V., Cavaglieri C.R., Madruga V.A., Chacon-Mikahil M.P., Effect of resistance, endurance, and concurrent training on TNF- , IL-6 and CR P. Med SciSports Exerc, 2012, 44, 50-56, doi: 10.1249/MSS .0b013e 3182399dcc.CrossrefGoogle Scholar

  • 85. Polak J., Klimcakova E., Moro C., Viguerie N., Berlan M., Hejnova J., Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin-6 and tumor necrosis factor in obese women. Metabolism, 2006, 55, 1375- 1381, doi: 10.1016/j.metabol.2006.06.008.CrossrefGoogle Scholar

  • 86. Oberbach A., Lehman S., Kirsch K., Kirst J., Sonnabend M., Linke A., Long-term exercise training decreases interleukin- 6 (IL-6) serum levels in subjects with impaired glucose tolerance: effect of the - 174G/C variant in IL-6 gene. Eur J Endocrinol, 2008, 159, 129-136, doi: 10.1530/ EJE-08-0220.CrossrefGoogle Scholar

  • 87. Akerstrom T.C.A., Krogh-Madsen R., Winther Petersen A.M., Pedersen B.K., Glucose ingestion during endurance training in men attenuates expression of myokine receptor.Exp Physiol, 2009, 94, 1124-1131, doi: 10.1113/ expphysiol.2009.048983.CrossrefGoogle Scholar

  • 88. Tsujinaka T., Fujita J., Ebisui Ch., Yano M., Kominami E., Suzuki K., Interleukin-6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest, 1996, 97, 244-249, doi: 10.1172/JCI118398.CrossrefGoogle Scholar

  • 89. Kami K., Morikawa Y., Sekimoto M., Senba E., Gene expression of receptors for IL-6, LIF, and CNTF in regenerating skeletal muscle. J Histochem Cytochem, 2000, 48, 1203-1213, doi: 10.1177/002215540004800904.CrossrefGoogle Scholar

  • 90. Carson J.A., Baltgalvis K.A., Interleukin-6 as a key regulator of muscle mass during cachexia. Exerc Sport SciRev, 2010, 38, 168-176, doi: 10.1097/JES.0bo13e3181f44f11.CrossrefGoogle Scholar

  • 91. Bodell P.W., Kodesh E., Haddad F., Zaldivar F.P., Cooper D.M., Adams G.R., Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise. J Appl Physiol, 2009, 106, 443-453, doi: 10.1152/japplphysiol.90831.2008.CrossrefGoogle Scholar

  • 92. Serrano A.L., Baeza-Raja B., Perdiguero E., Jardi M., Muňoz-Canoves P., Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 2008, 7, 33-44, doi: 10.1016/j.cmet.2007.11.011.CrossrefGoogle Scholar

  • 93. McKay B.R., De Lisio M., Johnston A.P., O’Reilly C.E., Phillips S.M., Tarnopolsky M.A., Association of interleukin- 6 signaling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoSOne, 2009, 24, e6027. Available from: URL: http://www.plosone.orgGoogle Scholar

  • 94. Toth K.G., McKay B.R., De Lisio M., Little J.P., Tarnopolsky M.A., Parise G., IL-6 induced STAT3 signaling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLos One, 2011, 6, e17392. Available from: URL: http://www.plosone. orgCrossrefGoogle Scholar

  • 95. White U.A., Stephens J.M., The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des, 2011, 17, 340-346, doi: 10.2174/1381612117951642002.CrossrefGoogle Scholar

  • 96. Broholm Ch., Mortensen O.H., Nielsen S., Akerstrom T., Zankari A., Dahl B., Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J Physiol, 2008, 586, 2195-2201, doi: 10.1113/jphysiol.2007.149781.CrossrefGoogle Scholar

  • 97. Brandt C., Pedersen B.K., The role of exercise-induced myokines in muscle homeostasis and the defense against chronic disease. J Biomed Biotech, 2010, doi: 10.1115/2010/520258.CrossrefGoogle Scholar

About the article

Published Online: 2013-01-26

Published in Print: 2012-11-01

Citation Information: Human Movement, ISSN (Online) 1899-1955, ISSN (Print) 1732-3991, DOI: https://doi.org/10.2478/v10038-012-0045-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Saeid Golbidi and Ismail Laher
Journal of Diabetes Research, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in