Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Human Movement

The Journal of University School of Physical Education, Wroclaw

4 Issues per year

CiteScore 2016: 0.41

SCImago Journal Rank (SJR) 2016: 0.208
Source Normalized Impact per Paper (SNIP) 2016: 0.230

Open Access
See all formats and pricing
More options …
Volume 18, Issue 2


Effects of Two-Week High-Intensity Interval Training on Cognition in Adolescents – A Randomized Controlled Pilot Study

Mari Stenman / Arto J. Pesola / Arto Laukkanen / Eero A. Haapala
  • Corresponding author
  • Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
  • Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-05 | DOI: https://doi.org/10.1515/humo-2017-0019


Purpose. We investigated the effects of a two-week high-intensity interval training (HIT) on cognition in adolescents.

Methods. The participants were recruited from local high schools with an electronic messaging system. The HIT group participated in 4 high-intensity interval running sessions and 2 circuit training sessions. The control group (CG) continued their usual habits. Reaction time, choose reaction time, working memory, visual memory, and learning were assessed by computerized CogState test battery. The intervention effect was investigated with repeated measures ANOVA and the effect size by Morris dppc2.

Results. The total of 25 participants aged 17–20 years participated in the baseline measurements and were randomized into the intervention (n = 12) and control (n = 13) groups; 9 people in the HIT group and 10 in the CG also participated in the follow-up assessments. Reaction time (mean change [SD] = 0.02 [0.03] vs. −0.05 [0.08], p for time*group interaction = 0.025, dppc2 = −0.297) and choice reaction time (0.03 [0.03] vs. −0.01 [0.04], p for time*group interaction = 0.017, dppc2 = −0.874) improved more in the CG than in the HIT group. While we found no other statistically significant time*group interactions, intervention turned out to have a small negative effect on working memory (dppc2 = −0.470) and a small positive effect on visual memory and learning (dppc2 = 0.419).

Conclusions. The study on HIT produced mixed effects on cognition in adolescents. Studies with a longer intervention period and larger sample sizes are warranted to further explore HIT effects on cognition.

Keywords: youth; physical activity; exercise; fitness; cognition


  • 1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229; doi: 10.1016/S0140-6736(12)61031-9.Web of ScienceCrossrefGoogle Scholar

  • 2. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22(1): 15–23.Google Scholar

  • 3. Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197–S239; doi: 10.1139/apnm-2015-0663.CrossrefGoogle Scholar

  • 4. Donnelly JE, Hillman CH, Castelli D, Etnier JL, Lee S, Tomporowski P, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48(6):1197–1222; doi: 10.1249/MSS.0000000000000901.CrossrefGoogle Scholar

  • 5. Harris KC, Kuramoto LK, Schulzer M, Retallack JE. Effect of school-based physical activity interventions on body mass index in children: a meta-analysis. CMAJ. 2009; 180(7):719–726; doi: 10.1503/cmaj.080966.CrossrefGoogle Scholar

  • 6. Biddle SJH, Batterham AM. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act. 2015;12(1):95; doi: 10.1186/s12966-015-0254-9.Web of ScienceCrossrefGoogle Scholar

  • 7. Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012; 112(7):2767–2775; doi: 10.1007/s00421-011-2254-z.Web of ScienceCrossrefGoogle Scholar

  • 8. Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab. 2014;39(3):409–412; doi: 10.1139/apnm-2013-0187.Web of ScienceCrossrefGoogle Scholar

  • 9. Logan GR, Harris N, Duncan S, Schofield G. A review of adolescent high-intensity interval training. Sport Med. 2014;44(8):1071–1085; doi: 10.1007/s40279-014-0187-5.CrossrefGoogle Scholar

  • 10. Kwak L, Kremers SP, Bergman P, Ruiz JR, Rizzo NS, Sjöström M. Associations between physical activity, fitness, and academic achievement. J Pediatr. 2009;155(6):914–918; doi: 10.1016/j.jpeds.2009.06.019.CrossrefGoogle Scholar

  • 11. Esteban-Cornejo I, Tejero-Gonzalez CM, Sallis JF, Veiga OL. Physical activity and cognition in adolescents: a systematic review. J Sci Med Sport. 2015;18(5):534–539; doi: 10.1016/j.jsams.2014.07.007.Web of ScienceCrossrefGoogle Scholar

  • 12. Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR. High-intensity interval training on cognitive and mental health in adolescents. Med Sci Sports Exerc. 2016;48(10):1985–1993; doi: 10.1249/MSS.0000000000000993.Web of ScienceCrossrefGoogle Scholar

  • 13. Ma JK, Le Mare L, Gurd BJ. Four minutes of in-class high-intensity interval activity improves selective attention in 9- to 11-year olds. Appl Physiol Nutr Metab. 2015;40(3): 238–244; doi: 10.1139/apnm-2014-0309.Google Scholar

  • 14. Alves CR, Tessaro VH, Teixeira LA, Murakava K, Roschel H, Gualano B, et al. Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept Mot Skills. 2014; 118(1):63–72; doi: 10.2466/22.06.PMS.118k10w4.CrossrefGoogle Scholar

  • 15. Drigny J, Gremeaux V, Dupuy O, Gayda M, Bherer L, Juneau M, et al. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: a pilot study. J Rehabil Med. 2014;46(10):1050–1054; doi: 10.2340/16501977-1905.CrossrefGoogle Scholar

  • 16. Lucas SJ, Cotter JD, Brassard P, Bailey DM. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab. 2015;35(6):902–911; doi: 10.1038/jcbfm.2015.49.CrossrefGoogle Scholar

  • 17. Bond B, Cockcroft EJ, Williams CA, Harris S, Gates PE, Jackman SR, et al. Two weeks of high-intensity interval training improves novel but not traditional cardiovascular disease risk factors in adolescents. Am J Physiol Heart Circ Physiol. 2015;309(6):H1039–H1047; doi: 10.1152/ajpheart.00360.2015.CrossrefGoogle Scholar

  • 18. CogState. CogState Research. Melbourne: CogState Limited; 2001.Google Scholar

  • 19. Dingwall KM, Lewis MS, Maruff P, Cairney S. Reliability of repeated cognitive testing in healthy Indigenous Australian adolescents. Aust Psychol. 2009;44(4):224–234.Web of ScienceCrossrefGoogle Scholar

  • 20. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, et al. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24(2):165–178; doi: 10.1093/arclin/acp010.CrossrefWeb of ScienceGoogle Scholar

  • 21. Saari A, Sankilampi U, Hannila ML, Kiviniemi V, Kesseli K, Dunkel L. New Finnish growth references for children and adolescents aged 0 to 20 years: length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann Med. 2011;43(3):235–248; doi: 10.3109/07853890.2010.515603.Web of ScienceCrossrefGoogle Scholar

  • 22. Taylor SJ, Whincup PH, Hindmarsh PC, Lampe F, Odoki K, Cook DG. Performance of a new pubertal self-assessment questionnaire: a preliminary study. Paediatr Perinat Epidemiol. 2001;15(1):88–94; doi: 10.1046/j.1365-3016.2001.00317.x.CrossrefGoogle Scholar

  • 23. Armstrong N, Welsman J, Winsley R. Is peak VO2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17(5):356–359; doi: 10.1055/s-2007-972860.CrossrefGoogle Scholar

  • 24. Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods. 2008;11(2): 364–386; doi: 10.1177/1094428106291059.CrossrefWeb of ScienceGoogle Scholar

  • 25. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159; doi: 10.1037/0033-2909.112.1.155.CrossrefGoogle Scholar

  • 26. Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci. 2014;26(2):138–146; doi: 10.1123/pes.2013-0125.CrossrefWeb of ScienceGoogle Scholar

  • 27. Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. 2013;3(1):403–428; doi: 10.1002/cphy.c110063.CrossrefWeb of ScienceGoogle Scholar

  • 28. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530–535; doi: 10.1161/01.CIR.0000080893.55729.28.CrossrefGoogle Scholar

  • 29. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213; doi: 10.1016/j.bbi.2010.10.015.CrossrefWeb of ScienceGoogle Scholar

  • 30. Howard SJ, Cook CJ, Said-Mohamed R, Norris SA, Draper CE. The (possibly negative) effects of physical activity on executive functions: implications of the changing metabolic costs of brain development. J Phys Act Health. 2016;13(9):1017–1022; doi: 10.1123/jpah.2015-0687.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-11-15

Accepted: 2017-06-09

Published Online: 2017-08-05

Published in Print: 2017-06-01

Citation Information: Human Movement, Volume 18, Issue 2, Pages 15–20, ISSN (Online) 1899-1955, DOI: https://doi.org/10.1515/humo-2017-0019.

Export Citation

© 2017 Human Movement. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in