Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Hybrid Materials

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

A Non-Oxidative Approach Towards Hybrid Silicon Nanowire- Based Solar Cell Heterojunctions

Muhammad Y. Bashouti / Jürgen Ristein / Hossam Haick
  • The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute,Technion – Israel Institute of Technology, Haifa 32000, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silke Christiansen
  • Max-Planck-Institute for the Scienceof Light, Günther-Scharowsky-Str. 1, D-91058 Erlangen
  • Institute of Nanoarchitectures for Solar Energy Conversion, Helmholtz-Center Berlin (HZB) Hahn-Meitner-Platz 1, D-14109 Berlin
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-10 | DOI: https://doi.org/10.2478/hyma-2013-0002


A general method for the non-oxidative termination of silicon nanowires (Si NWs) is reviewed. Oxide-free Si NW have been successfully alkylated in the lab using a two-step chlorination/alkylation process. The distinctive properties of the resulting Si NW have been taken advantage of by integrating the Si NWs into functional devices such as solar cells. Moreover, molecularly terminated Si NWs exhibit lower defect density emissions than unmodified Si NWs. This, in part, explains the better performance of the molecularly terminated Si NW-based solar cells. Solar cells that use organic-inorganic hybrid Si NWs as absorbers show an increased open-circuit voltage (Voc), an increased short-circuit current (Jsc) and a higher fill factor (FF). The aim of chemical functionalization is to protect Si NWs from extensive oxidation, add functionality and to adjust surface electronic properties such as the work function, surface Fermi level and band bending. The stability of the terminated of Si NWs was found to be dependent on the molecular chain length, molecular coverage, interaction type (π-π or σ-σ), surface energy and Si NW diameter.

Keywords: Silicon Nanowire; Oxide Free Silicon; Two-Step Process Chlorination/Alkylation Process; Hybrid Solar Cell; Oxidation Resistance; Photoemission; Heterojunction


  • [1] E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S.Berger, Synthesis and characterization of PbSe quantum wires, multipods, quantum rods,and cubes, Nano Lett, 3 (2003) 857-862.CrossrefGoogle Scholar

  • [2] K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano Lett, 7 (2007) 1793-1798.CrossrefGoogle Scholar

  • [3] M.Y. Bashouti, R.T. Tung, H. Haick, Tuning the Electrical Properties of Si Nanowire Field-Effect Transistors by Molecular Engineering, Small, 5 (2009) 2761-2769.CrossrefGoogle Scholar

  • [4] S.W. Schmitt, F. Schechtel, D. Amkreutz, M. Bashouti, S.K.Srivastava, B. Hoffmann, C. Dieker, E. Spiecker, B. Rech, S.H. Christiansen, Nanowire Arrays in Multicrystalline Silicon Thin Films on Glass: A Promising Material for Research and Applications in Nanotechnology, Nano Lett, 12 (2012) 4050-4054.CrossrefGoogle Scholar

  • [5] V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters, Nano Lett, 9 (2009) 1549-1554.CrossrefGoogle Scholar

  • [6] M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A.Filler, M.C. Putnam, N.S. Lewis, H.A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells, Nano Lett, 8 (2008) 710-714.CrossrefGoogle Scholar

  • [7] M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W.Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics, Energ Environ Sci, 4 (2011) 866-871.CrossrefGoogle Scholar

  • [8] S.K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.D.Song, H.G. Park, C.M. Lieber, Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through Morphological Design, Nano Lett, 12 (2012) 4971-4976.CrossrefGoogle Scholar

  • [9] S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly( 3,4-ethylenedioxythiophene), J Mater Chem, 15 (2005) 2077-2088.CrossrefGoogle Scholar

  • [10] C.Y. Kuo, C. Gau, B.T. Dai, Photovoltaic characteristics of silicon nanowire arrays synthesized by vapor-liquid-solid process, Sol Energ Mat Sol C, 95 (2011) 154-157.Google Scholar

  • [11] H.C. Lee, S.C. Wu, T.C. Yang, T.J. Yen, Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure, Energies, 3 (2010) 784-U215.CrossrefGoogle Scholar

  • [12] Q.L. Li, X.X. Zhu, Y. Yang, D.E. Ioannou, H.D. Xiong, D.W.Kwon, J.S. Suehle, C.A. Richter, The large-scale integration of high-performance silicon nanowire field effect transistors, Nanotechnology, 20 (2009).Google Scholar

  • [13] C.X. Lin, M.L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications, Opt Express, 17 (2009) 19371-19381.CrossrefGoogle Scholar

  • [14] C.W. Liu, C.L. Cheng, B.T. Dai, C.H. Yang, J.Y. Wang, Fabrication and Photovoltaic Characteristics of Coaxial Silicon Nanowire Solar Cells Prepared by Wet Chemical Etching, Int J Photoenergy, (2012).CrossrefGoogle Scholar

  • [15] C. Chen, R. Jia, H.H. Yue, H.F. Li, X.Y. Liu, D.Q. Wu, W.C.Ding, T.C. Ye, S. Kasai, H. Tamotsu, J.H. Chu, S.L. Wang, Silicon nanowire-array-textured solar cells for photovoltaic application, J Appl Phys, 108 (2010).Google Scholar

  • [16] Y. Paska, H. Haick, Interactive Effect of Hysteresis and Surface Chemistry on Gated Silicon Nanowire Gas Sensors, Acs Appl Mater Inter, 4 (2012) 2604-2617.CrossrefGoogle Scholar

  • [17] Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, Molecular Gating of Silicon Nanowire Field-Effect Transistors with Nonpolar Analytes, Acs Nano, 6 (2012) 335-345.CrossrefGoogle Scholar

  • [18] Y. Paska, T. Stelzner, S. Christiansen, H. Haick, Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors, Acs Nano, 5 (2011) 5620-5626.CrossrefGoogle Scholar

  • [19] Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors, Nano Lett, 3 (2003) 149-152.CrossrefGoogle Scholar

  • [20] K.Q. Peng, J.S. Jie, W.J. Zhang, S.T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl Phys Lett, 93 (2008).Google Scholar

  • [21] R. Rurali, Colloquium: Structural, electronic, and transport properties of silicon nanowires, Rev Mod Phys, 82 (2010) 427-449.CrossrefGoogle Scholar

  • [22] H. Haick, P.T. Hurley, A.I. Hochbaum, P.D. Yang, N.S. Lewis, Electrical characteristics and chemical stability of nonoxidized, methyl-terminated silicon nanowires, J Am Chem Soc, 128 (2006) 8990-8991.CrossrefGoogle Scholar

  • [23] O. Shirak, O. Shtempluck, V. Kotchtakov, G. Bahir, Y.E. Yaish, High performance horizontal gate-all-around silicon nanowire field-effect transistors, Nanotechnology, 23 (2012).CrossrefPubMedGoogle Scholar

  • [24] Q.K. Shu, J.Q. Wei, K.L. Wang, S.A. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A.Y. Cao, H.W. Zhu, D.H. Wu, Efficient energy conversion of nanotube/nanowire-based solar cells, Chem Commun, 46 (2010) 5533-5535.CrossrefGoogle Scholar

  • [25] B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra, F. Falk, Increasing the efficiency of polymer solar cells by silicon nanowires, Nanotechnology, 22 (2011).CrossrefGoogle Scholar

  • [26] E.C. Garnett, P.D. Yang, Silicon nanowire radial p-n junction solar cells, J Am Chem Soc, 130 (2008) 9224-+.CrossrefGoogle Scholar

  • [27] M.Y. Bashouti, T. Stelzner, A. Berger, S. Christiansen, H.Haick, Chemical Passivation of Silicon Nanowires with C(1)-C(6) Alkyl Chains through Covalent Si-C Bonds, J Phys Chem C, 112 (2008) 19168-19172.Google Scholar

  • [28] M.Y. Bashouti, T. Stelzner, S. Christiansen, H. Haick, Covalent Attachment of Alkyl Functionality to 50 nm Silicon Nanowires through a Chlorination/Alkylation Process, J Phys Chem C, 113 (2009) 14823-14828.CrossrefGoogle Scholar

  • [29] J.S. Jie, W.J. Zhang, K.Q. Peng, G.D. Yuan, C.S. Lee, S.T.Lee, Surface-Dominated Transport Properties of Silicon Nanowires, Adv Funct Mater, 18 (2008) 3251-3257.CrossrefGoogle Scholar

  • [30] J. Terry, M.R. Linford, C. Wigren, R.Y. Cao, P. Pianetta, C.E.D.Chidsey, Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction, Appl Phys Lett, 71 (1997) 1056-1058.Google Scholar

  • [31] F. Effenberger, G. Gotz, B. Bidlingmaier, M. Wezstein, Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces, Angew Chem Int Edit, 37 (1998) 2462-2464.Google Scholar

  • [32] A.B. Sieval, R. Linke, G. Heij, G. Meijer, H. Zuilhof, E.J.R.Sudholter, Amino-terminated organic monolayers on hydrogen-terminated silicon surfaces, Langmuir, 17 (2001) 7554-7559.CrossrefGoogle Scholar

  • [33] R.S. Wagner, W.C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ), Appl Phys Lett, 4 (1964) 89-&. CrossrefGoogle Scholar

  • [34] A. Bansal, X.L. Li, S.I. Yi, W.H. Weinberg, N.S. Lewis, Spectroscopic studies of the modification of crystalline Si(111) surfaces with covalently-attached alkyl chains using a chlorination/alkylation method, J Phys Chem B, 105 (2001) 10266-10277.Google Scholar

  • [35] F.J. Himpsel, F.R. Mcfeely, A. Talebibrahimi, J.A. Yarmoff, G. Hollinger, Microscopic Structure of the Sio2/Si Interface, Phys Rev B, 38 (1988) 6084-6096.CrossrefGoogle Scholar

  • [36] F.J. Himpsel, A. Talebibrahimi, J.A. Yarmoff, G. Hollinger, Microscopic Structure of the Sio2/Si Interface, J Electrochem Soc, 135 (1988) C136-C136.Google Scholar

  • [37] M.Y. Bashouti, K. Sardashti, J. Ristein, S.H. Christiansen, Early stages of oxide growth in H-terminated silicon nanowires: determination of kinetic behavior and activation energy, Phys Chem Chem Phys, 14 (2012) 11877-11881.CrossrefGoogle Scholar

  • [38] M. Bashouti, K. Sardashti, J. Ristein, S. Christiansen,.Kinetic study of H-terminated silicon nanowires oxidation in very first stages, Nanoscale res. lett, 8 (1), 41 (2013)Google Scholar

  • [39] T.K. Whidden, P. Thanikasalam, M.J. Rack, D.K. Ferry, Initial Oxidation of Silicon(100) - a Unified Chemical-Model for Thin and Thick Oxide-Growth Rates and Interfacial Structure, J Vac Sci Technol B, 13 (1995) 1618-1625.Google Scholar

  • [40] D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Smalldiameter silicon nanowire surfaces, Science, 299 (2003) 1874-1877.CrossrefGoogle Scholar

  • [41] D.B. Mawhinney, J.A. Glass, J.T. Yates, FTIR study of the oxidation of porous silicon, J Phys Chem B, 101 (1997) 1202-1206.CrossrefGoogle Scholar

  • [42] R.H. Tian, O. Seitz, M. Li, W.C. Hu, Y.J. Chabal, J.M. Gao, Infrared Characterization of Interfacial Si-O Bond Formation on Silanized Flat SiO2/Si Surfaces, Langmuir, 26 (2010) 4563-4566.CrossrefGoogle Scholar

  • [43] D.K. Schwartz, Mechanisms and kinetics of self-assembled monolayer formation, Annu Rev Phys Chem, 52 (2001) 107-137.CrossrefGoogle Scholar

  • [44] R.G. Nuzzo, B.R. Zegarski, L.H. Dubois, Fundamental- Studies of the Chemisorption of Organosulfur Compounds on Au(111) - Implications for Molecular Self-Assembly on Gold Surfaces, J Am Chem Soc, 109 (1987) 733-740.Google Scholar

  • [45] V.A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gosele, S.H. Christiansen, Silicon nanowire oxidation: the influence of sidewall structure and gold distribution, Nanotechnology, 20 (2009).CrossrefGoogle Scholar

  • [46] M.Y. Bashouti, Y. Paska, S.R. Puniredd, T. Stelzner, S.Christiansen, H. Haick, Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent 2D surfaces, Phys Chem Chem Phys, 11 (2009) 3845-3848.CrossrefGoogle Scholar

  • [47] O. Assad, S.R. Puniredd, T. Stelzner, S. Christiansen, H.Haick, Stable Scaffolds for Reacting Si Nanowires with Further Organic Functionalities while Preserving Si-C Passivation of Surface Sites, J Am Chem Soc, 130 (2008) 17670-+.CrossrefGoogle Scholar

  • [48] S.R. Puniredd, O. Assad, H. Haick, Highly stable organic monolayers for reacting silicon with further functionalities: The effect of the C-C bond nearest the silicon surface, J Am Chem Soc, 130 (2008) 13727-13734.CrossrefGoogle Scholar

  • [49] S.R. Puniredd, O. Assad, T. Stelzner, S. Christiansen, H. Haick, Catalyst-Free Functionalization for Versatile Modification of Nonoxidized Silicon Structures, Langmuir, 27 (2011) 4764-4771.CrossrefGoogle Scholar

  • [50] M. Y. Bashouti, M. Pietsch, G. Brönstrup, V. Sivakov, Jürgen Ristein, S. Christiansen, Hybrid polymer / silicon nanowire solar cell with high efficiency through covalent Si-C terminated surface passivation. Prog. Photovolt: Res. Appl., (2013). (Online).Google Scholar

  • [51] M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner- Evans, J.M. Spurgeon, E.L. Warren, R.M. Briggs, N.S. Lewis, H.A. Atwater, Si microwire-array solar cells, Energ Environ Sci, 3 (2010) 1037-1041.CrossrefGoogle Scholar

  • [52] B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 449 (2007) 885-U888.CrossrefGoogle Scholar

  • [53] S. Maldonado, D. Knapp, N.S. Lewis, Near-ideal photodiodes from sintered gold nanoparticle films on methyl-terminated Si(111) surfaces, J Am Chem Soc, 130 (2008) 3300-+.Google Scholar

  • [54] M. Ambrico, P. F. Ambrico, R, di Mundo, Electrical transport Features of SiNWs Random Network on Si Support After Covalent Attachment of New Organic Functionalities, Nanomater. Nanotechnol, 2, (2012), 1-8. Google Scholar

About the article

Published Online: 2013-06-10

Published in Print: 2014-01-01

Citation Information: Hybrid Materials, ISSN (Online) 2299-3940, DOI: https://doi.org/10.2478/hyma-2013-0002.

Export Citation

©2013 Muhammad Y. Bashouti et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Janneke Veerbeek, Nienke J. Firet, Wouter Vijselaar, Rick Elbersen, Han Gardeniers, and Jurriaan Huskens
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 1, Page 413
Prabhava S. N. Barimar, Catherine M. Doyle, Borislav Naydenov, and John J. Boland
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2016, Volume 34, Number 4, Page 041806

Comments (0)

Please log in or register to comment.
Log in